Li Shu-Nan, Cao Bing-Yang
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
Entropy (Basel). 2019 Feb 21;21(2):204. doi: 10.3390/e21020204.
Generalized expressions of the entropy and related concepts in non-Fourier heat conduction have attracted increasing attention in recent years. Based on standard and fractional phonon Boltzmann transport equations (BTEs), we study entropic functionals including entropy density, entropy flux and entropy production rate. Using the relaxation time approximation and power series expansion, macroscopic approximations are derived for these entropic concepts. For the standard BTE, our results can recover the entropic frameworks of classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT) as if there exists a well-defined effective thermal conductivity. For the fractional BTEs corresponding to the generalized Cattaneo equation (GCE) class, the entropy flux and entropy production rate will deviate from the forms in CIT and EIT. In these cases, the entropy flux and entropy production rate will contain fractional-order operators, which reflect memory effects.
近年来,非傅里叶热传导中熵及相关概念的广义表达式越来越受到关注。基于标准和分数阶声子玻尔兹曼输运方程(BTEs),我们研究了包括熵密度、熵通量和熵产生率在内的熵泛函。利用弛豫时间近似和幂级数展开,推导了这些熵概念的宏观近似。对于标准BTE,我们的结果可以恢复经典不可逆热力学(CIT)和扩展不可逆热力学(EIT)的熵框架,就好像存在一个定义明确的有效热导率一样。对于与广义卡塔尼奥方程(GCE)类相对应的分数阶BTEs,熵通量和熵产生率将偏离CIT和EIT中的形式。在这些情况下,熵通量和熵产生率将包含分数阶算子,这反映了记忆效应。