Suppr超能文献

基于标准和分数阶声子玻尔兹曼输运方程的熵框架

On Entropic Framework Based on Standard and Fractional Phonon Boltzmann Transport Equations.

作者信息

Li Shu-Nan, Cao Bing-Yang

机构信息

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

出版信息

Entropy (Basel). 2019 Feb 21;21(2):204. doi: 10.3390/e21020204.

Abstract

Generalized expressions of the entropy and related concepts in non-Fourier heat conduction have attracted increasing attention in recent years. Based on standard and fractional phonon Boltzmann transport equations (BTEs), we study entropic functionals including entropy density, entropy flux and entropy production rate. Using the relaxation time approximation and power series expansion, macroscopic approximations are derived for these entropic concepts. For the standard BTE, our results can recover the entropic frameworks of classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT) as if there exists a well-defined effective thermal conductivity. For the fractional BTEs corresponding to the generalized Cattaneo equation (GCE) class, the entropy flux and entropy production rate will deviate from the forms in CIT and EIT. In these cases, the entropy flux and entropy production rate will contain fractional-order operators, which reflect memory effects.

摘要

近年来,非傅里叶热传导中熵及相关概念的广义表达式越来越受到关注。基于标准和分数阶声子玻尔兹曼输运方程(BTEs),我们研究了包括熵密度、熵通量和熵产生率在内的熵泛函。利用弛豫时间近似和幂级数展开,推导了这些熵概念的宏观近似。对于标准BTE,我们的结果可以恢复经典不可逆热力学(CIT)和扩展不可逆热力学(EIT)的熵框架,就好像存在一个定义明确的有效热导率一样。对于与广义卡塔尼奥方程(GCE)类相对应的分数阶BTEs,熵通量和熵产生率将偏离CIT和EIT中的形式。在这些情况下,熵通量和熵产生率将包含分数阶算子,这反映了记忆效应。

相似文献

1
On Entropic Framework Based on Standard and Fractional Phonon Boltzmann Transport Equations.
Entropy (Basel). 2019 Feb 21;21(2):204. doi: 10.3390/e21020204.
2
Fractional-order heat conduction models from generalized Boltzmann transport equation.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190280. doi: 10.1098/rsta.2019.0280. Epub 2020 May 11.
3
Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction.
Phys Rev E. 2017 Sep;96(3-1):032131. doi: 10.1103/PhysRevE.96.032131. Epub 2017 Sep 19.
4
Change of entropy for the one-dimensional ballistic heat equation: Sinusoidal initial perturbation.
Phys Rev E. 2019 Apr;99(4-1):042107. doi: 10.1103/PhysRevE.99.042107.
5
Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation.
Phys Rev E. 2017 Dec;96(6-1):063311. doi: 10.1103/PhysRevE.96.063311. Epub 2017 Dec 21.
6
Entropy production and nonlinear Fokker-Planck equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061136. doi: 10.1103/PhysRevE.86.061136. Epub 2012 Dec 27.
7
General expression for entropy production in transport processes based on the thermomass model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061107. doi: 10.1103/PhysRevE.85.061107. Epub 2012 Jun 8.
8
Generalized entropy production phenomena: a master-equation approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012114. doi: 10.1103/PhysRevE.89.012114. Epub 2014 Jan 13.
9
Thermal transport in beta-gallium oxide thin-films using non-gray Boltzmann transport equation.
J Phys Condens Matter. 2021 Dec 24;34(10). doi: 10.1088/1361-648X/ac413e.

引用本文的文献

本文引用的文献

2
Phenomenological Thermodynamics of Irreversible Processes.
Entropy (Basel). 2018 Jun 20;20(6):479. doi: 10.3390/e20060479.
3
Ballistic-diffusive heat-conduction equations.
Phys Rev Lett. 2001 Mar 12;86(11):2297-300. doi: 10.1103/PhysRevLett.86.2297.
4
Tempered diffusion: A transport process with propagating fronts and inertial delay.
Phys Rev A. 1992 Dec 15;46(12):R7371-R7374. doi: 10.1103/physreva.46.r7371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验