Suppr超能文献

再探经典与量子H定理:变分熵与弛豫过程

Classical and Quantum H-Theorem Revisited: Variational Entropy and Relaxation Processes.

作者信息

Medel-Portugal Carlos, Solano-Altamirano Juan Manuel, Carrillo-Estrada José Luis E

机构信息

Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal. J-48, Puebla 72570, Mexico.

Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, Puebla 72520, Mexico.

出版信息

Entropy (Basel). 2021 Mar 19;23(3):366. doi: 10.3390/e23030366.

Abstract

We propose a novel framework to describe the time-evolution of dilute classical and quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium. Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We subsequently define a global functional that is the sum of cell -functionals. Each cell functional recovers the corresponding Maxwell-Boltzmann, Fermi-Dirac, or Bose-Einstein distribution function, depending on the classical or quantum nature of the gas. The time-evolution of the system is described by the relationship dH/dt≤0, and the equality condition occurs if the system is in the equilibrium state. Via the variational method, proof of the previous relationship, which might be an extension of the -theorem for inhomogeneous systems, is presented for both classical and quantum gases. Furthermore, the -functionals are in agreement with the correspondence principle. We discuss how the -functionals can be identified with the system's entropy and analyze the relaxation processes of out-of-equilibrium systems.

摘要

我们提出了一个新颖的框架,用于描述稀薄经典气体和量子气体从初始的非平衡态且具有空间不均匀性向平衡态演化的时间过程。简而言之,我们将系统划分为小单元,并考虑局部平衡假设。随后,我们定义一个全局泛函,它是单元泛函的总和。每个单元泛函根据气体的经典或量子性质恢复相应的麦克斯韦 - 玻尔兹曼、费米 - 狄拉克或玻色 - 爱因斯坦分布函数。系统的时间演化由关系dH/dt≤0描述,当系统处于平衡态时等式成立。通过变分法,针对经典气体和量子气体都给出了上述关系的证明,这可能是针对非均匀系统的 - 定理的一种扩展。此外, - 泛函与对应原理一致。我们讨论了如何将 - 泛函与系统的熵相识别,并分析了非平衡系统的弛豫过程。

相似文献

4
Efficiency and its bounds for a quantum Einstein engine at maximum power.最大功率下量子爱因斯坦引擎的效率及其界限
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051135. doi: 10.1103/PhysRevE.86.051135. Epub 2012 Nov 27.
9
Entropic Density Functional Theory.熵密度泛函理论
Entropy (Basel). 2023 Dec 21;26(1):10. doi: 10.3390/e26010010.

引用本文的文献

1
The Statistical Foundations of Entropy.熵的统计基础
Entropy (Basel). 2021 Oct 19;23(10):1367. doi: 10.3390/e23101367.

本文引用的文献

8
H-theorem in quantum physics.量子物理学中的 H 定理。
Sci Rep. 2016 Sep 12;6:32815. doi: 10.1038/srep32815.
10
Entropy for quantum pure states and quantum H theorem.量子纯态的熵与量子H定理
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062106. doi: 10.1103/PhysRevE.91.062106. Epub 2015 Jun 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验