Suppr超能文献

关于多尺度排列熵的统计特性:估计器方差的表征

On the Statistical Properties of Multiscale Permutation Entropy: Characterization of the Estimator's Variance.

作者信息

Dávalos Antonio, Jabloun Meryem, Ravier Philippe, Buttelli Olivier

机构信息

Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique, Énergétique (PRISME), University of Orléans, 45100 Orléans, INSA-CVL, France.

出版信息

Entropy (Basel). 2019 Apr 30;21(5):450. doi: 10.3390/e21050450.

Abstract

Permutation Entropy (PE) and Multiscale Permutation Entropy (MPE) have been extensively used in the analysis of time series searching for regularities. Although PE has been explored and characterized, there is still a lack of theoretical background regarding MPE. Therefore, we expand the available MPE theory by developing an explicit expression for the estimator's variance as a function of time scale and ordinal pattern distribution. We derived the MPE Cramér-Rao Lower Bound (CRLB) to test the efficiency of our theoretical result. We also tested our formulation against MPE variance measurements from simulated surrogate signals. We found the MPE variance symmetric around the point of equally probable patterns, showing clear maxima and minima. This implies that the MPE variance is directly linked to the MPE measurement itself, and there is a region where the variance is maximum. This effect arises directly from the pattern distribution, and it is unrelated to the time scale or the signal length. The MPE variance also increases linearly with time scale, except when the MPE measurement is close to its maximum, where the variance presents quadratic growth. The expression approaches the CRLB asymptotically, with fast convergence. The theoretical variance is close to the results from simulations, and appears consistently below the actual measurements. By knowing the MPE variance, it is possible to have a clear precision criterion for statistical comparison in real-life applications.

摘要

排列熵(PE)和多尺度排列熵(MPE)已广泛用于分析时间序列以寻找规律。尽管PE已得到探索和表征,但关于MPE仍缺乏理论背景。因此,我们通过推导估计器方差作为时间尺度和序数模式分布函数的显式表达式,扩展了现有的MPE理论。我们推导了MPE的克拉美 - 罗下界(CRLB)以检验我们理论结果的有效性。我们还根据模拟替代信号的MPE方差测量值对我们的公式进行了测试。我们发现MPE方差在等概率模式点周围对称,呈现出明显的最大值和最小值。这意味着MPE方差与MPE测量本身直接相关,并且存在一个方差最大的区域。这种效应直接源于模式分布,与时间尺度或信号长度无关。MPE方差也随时间尺度线性增加,除非MPE测量接近其最大值,此时方差呈现二次增长。该表达式渐近地接近CRLB,收敛速度很快。理论方差接近模拟结果,并且始终低于实际测量值。通过了解MPE方差,可以在实际应用中为统计比较制定明确的精度标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98d7/7514939/2770553aeec2/entropy-21-00450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验