Suppr超能文献

作为识别脑血流图信号中呼吸暂停描述符的熵度量

Entropy Measures as Descriptors to Identify Apneas in Rheoencephalographic Signals.

作者信息

González Carmen, Jensen Erik, Gambús Pedro, Vallverdú Montserrat

机构信息

Biomedical Engineering Research Centre, Universitat Politècnica de Catalunya, CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08028 Barcelona, Spain.

Quantium Medical, Research and Development Department, 08302 Mataró, Spain.

出版信息

Entropy (Basel). 2019 Jun 18;21(6):605. doi: 10.3390/e21060605.

Abstract

Rheoencephalography (REG) is a simple and inexpensive technique that intends to monitor cerebral blood flow (CBF), but its ability to reflect CBF changes has not been extensively proved. Based on the hypothesis that alterations in CBF during apnea should be reflected in REG signals under the form of increased complexity, several entropy metrics were assessed for REG analysis during apnea and resting periods in 16 healthy subjects: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), corrected conditional entropy (CCE) and Shannon entropy (SE). To compute these entropy metrics, a set of parameters must be defined a priori, such as, for example, the embedding dimension m, and the tolerance threshold r. A thorough analysis of the effects of parameter selection in the entropy metrics was performed, looking for the values optimizing differences between apnea and baseline signals. All entropy metrics, except SE, provided higher values for apnea periods (-values < 0.025). FuzzyEn outperformed all other metrics, providing the lowest -value ( = 0.0001), allowing to conclude that REG signals during apnea have higher complexity than in resting periods. Those findings suggest that REG signals reflect CBF changes provoked by apneas, even though further studies are needed to confirm this hypothesis.

摘要

脑血流图(REG)是一种简单且成本低廉的技术,旨在监测脑血流量(CBF),但其反映CBF变化的能力尚未得到广泛证实。基于这样的假设,即在呼吸暂停期间CBF的变化应以复杂度增加的形式反映在REG信号中,对16名健康受试者在呼吸暂停和静息期进行REG分析时评估了几种熵指标:近似熵(ApEn)、样本熵(SampEn)、模糊熵(FuzzyEn)、校正条件熵(CCE)和香农熵(SE)。为了计算这些熵指标,必须事先定义一组参数,例如嵌入维数m和容差阈值r。对熵指标中参数选择的影响进行了全面分析,以寻找优化呼吸暂停和基线信号之间差异的值。除SE外,所有熵指标在呼吸暂停期的值都更高(p值<0.025)。模糊熵优于所有其他指标,提供了最低的p值(p = 0.0001),从而可以得出结论,呼吸暂停期间的REG信号比静息期具有更高的复杂度。这些发现表明,REG信号反映了呼吸暂停引起的CBF变化,尽管还需要进一步研究来证实这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/7515089/08797f240a4a/entropy-21-00605-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验