Suppr超能文献

基于熵度量的嘈杂 EEG 信号分类。使用第一代和第二代统计数据进行性能评估。

Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics.

机构信息

Technological Institute of Informatics, Polytechnic University of Valencia, Alcoi Campus, Plaza Ferrandiz y Carbonell 2, Alcoi, Spain.

Department of Statistics, Polytechnic University of Valencia, Alcoi Campus, Alcoi, Spain.

出版信息

Comput Biol Med. 2017 Aug 1;87:141-151. doi: 10.1016/j.compbiomed.2017.05.028. Epub 2017 May 31.

Abstract

This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar, with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance achieved by ApEn suggests that this metric should not be used in these contexts.

摘要

本文评估了第一代熵度量的性能,这些度量以著名且广泛使用的近似熵(ApEn)和样本熵(SampEn)度量为代表,并考虑了从这些度量发展而来的模糊熵(FuzzyEn),用于脑电图(EEG)信号分类的情况。该研究使用了在实际 EEG 中常见的伪迹,如白噪声以及肌肉、心脏和眼动伪迹。使用两组不同的公共 EEG 记录,并考虑了干扰伪迹的实际幅度范围,这项工作优化并评估了这些度量在分类分段概率方面对伪迹的稳健性。结果表明,两个数据集的定性行为相似,SampEn 和 FuzzyEn 的性能最佳,噪声和肌肉伪迹是最具干扰性的因素。相反,初始化参数的变化范围很大。ApEn 的性能较差,表明在这些情况下不应使用该度量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验