Suppr超能文献

用于通过交付合同解决网络效用最大化问题的高斯置信传播算法

Gaussian Belief Propagation for Solving Network Utility Maximization with Delivery Contracts.

作者信息

Liao Shengbin, Sun Jianyong

机构信息

National Engineering Center for E-Learning, Huazhong Normal University, Wuhan 430079, China.

The National Engineering Laboratory for Educational Big Data Technology, Huazhong Normal University, Wuhan 430079, China.

出版信息

Entropy (Basel). 2019 Jul 19;21(7):708. doi: 10.3390/e21070708.

Abstract

Classical network utility maximization (NUM) models fail to capture network dynamics, which are of increasing importance for modeling network behaviors. In this paper, we consider the NUM with delivery contracts, which are constraints to the classical model to describe network dynamics. This paper investigates a method to distributively solve the given problem. We first transform the problem into an equivalent model of linear equations by dual decomposition theory, and then use Gaussian belief propagation algorithm to solve the equivalent issue distributively. The proposed algorithm has faster convergence speed than the existing first-order methods and distributed Newton method. Experimental results have demonstrated the effectiveness of our proposed approach.

摘要

经典的网络效用最大化(NUM)模型无法捕捉网络动态,而网络动态对于建模网络行为的重要性日益增加。在本文中,我们考虑带有交付合同的NUM,这些合同是对经典模型的约束,用于描述网络动态。本文研究了一种分布式求解给定问题的方法。我们首先通过对偶分解理论将问题转化为线性方程组的等价模型,然后使用高斯信念传播算法分布式地求解该等价问题。所提出的算法比现有的一阶方法和分布式牛顿法具有更快的收敛速度。实验结果证明了我们所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6016/7515223/ac4014f89b75/entropy-21-00708-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验