Suppr超能文献

公平回归的通用框架。

A General Framework for Fair Regression.

作者信息

Fitzsimons Jack, Al Ali AbdulRahman, Osborne Michael, Roberts Stephen

机构信息

Department of Engineering Science, University of Oxford, Oxford OX13PJ, UK.

Faculty of Business and Law, Northampton University, Northampton NN15PH, UK.

出版信息

Entropy (Basel). 2019 Jul 29;21(8):741. doi: 10.3390/e21080741.

Abstract

Fairness, through its many forms and definitions, has become an important issue facing the machine learning community. In this work, we consider how to incorporate group fairness constraints into kernel regression methods, applicable to Gaussian processes, support vector machines, neural network regression and decision tree regression. Further, we focus on examining the effect of incorporating these constraints in decision tree regression, with direct applications to random forests and boosted trees amongst other widespread popular inference techniques. We show that the order of complexity of memory and computation is preserved for such models and tightly binds the expected perturbations to the model in terms of the number of leaves of the trees. Importantly, the approach works on trained models and hence can be easily applied to models in current use and group labels are only required on training data.

摘要

公平性,通过其多种形式和定义,已成为机器学习社区面临的一个重要问题。在这项工作中,我们考虑如何将群体公平性约束纳入核回归方法,这些方法适用于高斯过程、支持向量机、神经网络回归和决策树回归。此外,我们专注于研究在决策树回归中纳入这些约束的效果,并将其直接应用于随机森林和提升树等其他广泛流行的推理技术。我们表明,此类模型的内存和计算复杂度顺序得以保留,并且根据树的叶子数量将预期扰动与模型紧密绑定。重要的是,该方法适用于已训练的模型,因此可以轻松应用于当前使用的模型,并且仅在训练数据上需要群体标签。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a694/7515270/275373b71fc5/entropy-21-00741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验