Abedi Mohammad, Bartolomeo Daniel
Department of Physics, University at Albany-SUNY, Albany, NY 12222, USA.
Entropy (Basel). 2019 Aug 6;21(8):765. doi: 10.3390/e21080765.
We develop an entropic framework to model the dynamics of stocks and European Options. Entropic inference is an inductive inference framework equipped with proper tools to handle situations where incomplete information is available. The objective of the paper is to lay down an alternative framework for modeling dynamics. An important information about the dynamics of a stock's price is scale invariance. By imposing the scale invariant symmetry, we arrive at choosing the logarithm of the stock's price as the proper variable to model. The dynamics of stock log price is derived using two pieces of information, the continuity of motion and the directionality constraint. The resulting model is the same as the Geometric Brownian Motion, GBM, of the stock price which is manifestly scale invariant. Furthermore, we come up with the dynamics of probability density function, which is a Fokker-Planck equation. Next, we extend the model to value the European Options on a stock. Derivative securities ought to be prices such that there is no arbitrage. To ensure the no-arbitrage pricing, we derive the risk-neutral measure by incorporating the risk-neutral information. Consequently, the Black-Scholes model and the Black-Scholes-Merton differential equation are derived.
我们开发了一个熵框架来对股票和欧式期权的动态进行建模。熵推理是一个归纳推理框架,配备了适当的工具来处理信息不完整的情况。本文的目的是建立一个用于建模动态的替代框架。关于股票价格动态的一个重要信息是尺度不变性。通过施加尺度不变对称性,我们选择股票价格的对数作为合适的建模变量。股票对数价格的动态是利用运动的连续性和方向性约束这两条信息推导出来的。所得模型与股票价格的几何布朗运动(GBM)相同,显然具有尺度不变性。此外,我们得出了概率密度函数的动态,它是一个福克 - 普朗克方程。接下来,我们将该模型扩展以对股票上的欧式期权进行估值。衍生证券的定价应使得不存在套利机会。为确保无套利定价,我们通过纳入风险中性信息来推导风险中性测度。因此,推导出了布莱克 - 斯科尔斯模型和布莱克 - 斯科尔斯 - 默顿微分方程。