Suppr超能文献

基于随机森林的产后抑郁症风险预测

Risk prediction for postpartum depression based on random forest.

作者信息

Xiao Meili, Yan Chunli, Fu Bing, Yang Shuping, Zhu Shujuan, Yang Dongqi, Lei Beimei, Huang Ruirui, Lei Jun

机构信息

Xiangya Nursing School, Central South University, Changsha 410013.

Department of Oncology, Third Xiangya Hospital, Central South University, Changsha 410013.

出版信息

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2020 Oct 28;45(10):1215-1222. doi: 10.11817/j.issn.1672-7347.2020.190655.

Abstract

OBJECTIVES

To explore the application of random forest algorithm in screening the risk factors and predictive values for postpartum depression.

METHODS

We recruited the participants from a tertiary hospital between June 2017 and June 2018 in Changsha City, and followed up from pregnancy up to 4-6 weeks postpartum.Demographic economics, psychosocial, biological, obstetric, and other factors were assessed at first trimesters with self-designed obstetric information questionnaire and the Chinese version of Edinburgh Postnatal Depression Scale (EPDS). During 4-6 weeks after delivery, the Chinese version of EPDS was used to score depression and self-designed questionnaire to collect data of delivery and postpartum. The data of subjects were randomly divided into the training data set and the verification data set according to the ratio of 3꞉1. The training data set was used to establish the random forest model of postpartum depression, and the verification data set was used to verify the predictive effects via the accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC index.

RESULTS

A total of 406 participants were in final analysis. Among them, 150 of whom had EPDS score ≥9, and the incidence of postpartum depression was 36.9%. The predictive effects of random forest model in the verification data set were at accuracy of 80.10%, sensitivity of 61.40%, specificity of 89.10%, positive predictive value of 73.00%, negative predictive value of 82.80%, and AUC index of 0.833. The top 10 predictive influential factors that screening by the variable importance measure in random forest model was antenatal depression, economic worries after delivery, work worries after delivery, free triiodothyronine in first trimesters, high-density lipoprotein in third trimester, venting temper to infants, total serum cholesterol and serum triglyceride in first trimester, hematocrit and serum triglyceride in third trimester.

CONCLUSIONS

Random forest has a great advantage in risk prediction for postpartum depression. Through comprehensive evaluation mechanism, it can identify the important influential factors for postpartum depression from complex multi-factors and conduct quantitative analysis, which is of great significance to identify the key factors for postpartum depression and carry out timely and effective intervention.

摘要

目的

探讨随机森林算法在产后抑郁危险因素筛查及预测价值中的应用。

方法

于2017年6月至2018年6月在长沙市某三级医院招募研究对象,从孕期至产后4 - 6周进行随访。在孕早期通过自行设计的产科信息问卷及中文版爱丁堡产后抑郁量表(EPDS)评估人口统计学、经济、心理社会、生物学、产科及其他因素。在产后4 - 6周,采用中文版EPDS对抑郁进行评分,并通过自行设计的问卷收集分娩及产后的数据。将研究对象的数据按照3∶1的比例随机分为训练数据集和验证数据集。利用训练数据集建立产后抑郁的随机森林模型,通过准确率、灵敏度、特异度、阳性预测值、阴性预测值及AUC指数对验证数据集进行预测效果验证。

结果

最终纳入分析406例研究对象。其中,EPDS评分≥9分者150例,产后抑郁发生率为36.9%。随机森林模型在验证数据集中的预测效果为:准确率80.10%,灵敏度61.40%,特异度89.10%,阳性预测值73.00%,阴性预测值82.80%,AUC指数0.833。通过随机森林模型的变量重要性度量筛选出的前10个预测影响因素为:产前抑郁、产后经济担忧、产后工作担忧、孕早期游离三碘甲状腺原氨酸、孕晚期高密度脂蛋白、对婴儿发脾气、孕早期总血清胆固醇和血清甘油三酯、孕晚期血细胞比容和血清甘油三酯。

结论

随机森林在产后抑郁风险预测方面具有较大优势。通过综合评价机制,能从复杂多因素中识别产后抑郁的重要影响因素并进行定量分析,对明确产后抑郁关键因素及及时有效干预具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验