Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
Photosynth Res. 2021 Jan;147(1):107-124. doi: 10.1007/s11120-020-00803-1. Epub 2020 Dec 2.
Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein.
蛋白质磷酸化是所有生物的一种基本的翻译后修饰。在自养生物中,蛋白质磷酸化对于光合作用的精细调节至关重要。光系统 II(PSII)核心和 PSII 捕光复合物(LHCII)的可逆磷酸化有助于调节光合作用活性。除了这些主要蛋白质的磷酸化之外,最近的磷酸蛋白质组学分析还揭示了几个蛋白质在类囊体膜中被磷酸化。在这项研究中,我们利用 Phos-tag 技术全面评估了拟南芥类囊体膜中的蛋白质磷酸化。Phos-tag SDS-PAGE 使磷酸化蛋白相对于其非磷酸化同工型发生迁移,从而将磷酸化蛋白与非磷酸化同工型区分开来。我们将这项技术推广到二维(2D)SDS-PAGE 中,用于检测类囊体膜中的蛋白质磷酸化。通过传统 SDS-PAGE 在第一维分离类囊体蛋白,然后通过 Phos-tag SDS-PAGE 在第二维分离。除了分离主要的磷酸化光合作用相关蛋白外,2D Phos-tag SDS-PAGE 还能够检测到类囊体膜中的几个较小的磷酸化蛋白。对类囊体激酶突变体的分析表明,光依赖性蛋白磷酸化主要局限于 PSII 核心和 LHCII 蛋白的磷酸化。此外,我们评估了类囊体膜的结构域、基质片层、基质片层和基质片层的磷酸化状态。总的来说,这些结果表明 Phos-tag SDS-PAGE 是一种有用的生化工具,可用于研究类囊体膜蛋白中的体内蛋白质磷酸化。