Crepin Aurelie, Caffarri Stefano
Aix Marseille Université - AMU, Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France; Commissariat à l'Energie Atomique - CEA, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, 13009 Marseille, France; Centre National de la Recherche Scientifique - CNRS, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13009 Marseille, France.
Aix Marseille Université - AMU, Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France; Commissariat à l'Energie Atomique - CEA, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, 13009 Marseille, France; Centre National de la Recherche Scientifique - CNRS, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13009 Marseille, France.
Biochim Biophys Acta. 2015 Dec;1847(12):1539-48. doi: 10.1016/j.bbabio.2015.09.005. Epub 2015 Sep 24.
State transitions are an important photosynthetic short-term response that maintains the excitation balance between photosystems I (PSI) and II (PSII). In plants, when PSII is preferentially excited, LHCII, the main heterotrimeric light harvesting complex of PSII, is phosphorylated by the STN7 kinase, detaches from PSII and moves to PSI to equilibrate the relative absorption of the two photosystems (State II). When PSI is preferentially excited LHCII is dephosphorylated by the PPH1 (TAP38) phosphatase, and returns to PSII (State I). Phosphorylation of LHCII that remain bound to PSII has also been observed. Although the kinetics of LHCII phosphorylation are well known from a qualitative standpoint, the absolute phosphorylation levels of LHCII (and its isoforms) bound to PSI and PSII have been little studied. In this work we thoroughly investigated the phosphorylation level of the Lhcb1 and Lhcb2 isoforms that compose LHCII in PSI-LHCII and PSII-LHCII supercomplexes purified from WT and state transition mutants of Arabidopsis thaliana. We found that, at most, 40% of the monomers that make up PSI-bound LHCII trimers are phosphorylated. Phosphorylation was much lower in PSII-bound LHCII trimers reaching only 15-20%. Dephosphorylation assays using a recombinant PPH1 phosphatase allowed us to investigate the role of the two isoforms during state transitions. Our results strongly suggest that a single phosphorylated Lhcb2 is sufficient for the formation of the PSI-LHCII supercomplex. These results are a step towards a refined model of the state transition phenomenon and a better understanding of the short-term response to changes in light conditions in plants.
状态转换是一种重要的光合短期响应,可维持光系统I(PSI)和II(PSII)之间的激发平衡。在植物中,当PSII被优先激发时,PSII的主要异源三聚体捕光复合体LHCII会被STN7激酶磷酸化,从PSII上脱离并移动到PSI,以平衡两个光系统的相对吸收(状态II)。当PSI被优先激发时,LHCII会被PPH1(TAP38)磷酸酶去磷酸化,并返回PSII(状态I)。也观察到了与PSII结合的LHCII的磷酸化情况。尽管从定性的角度来看,LHCII磷酸化的动力学是众所周知的,但与PSI和PSII结合的LHCII(及其异构体)的绝对磷酸化水平却很少被研究。在这项工作中,我们深入研究了从拟南芥野生型和状态转换突变体中纯化的PSI-LHCII和PSII-LHCII超复合体中组成LHCII的Lhcb1和Lhcb2异构体的磷酸化水平。我们发现,构成与PSI结合的LHCII三聚体的单体中,最多只有40%被磷酸化。与PSII结合的LHCII三聚体中的磷酸化水平要低得多,仅达到15-20%。使用重组PPH1磷酸酶进行的去磷酸化实验使我们能够研究这两种异构体在状态转换过程中的作用。我们的结果强烈表明,单个磷酸化的Lhcb2就足以形成PSI-LHCII超复合体。这些结果朝着完善状态转换现象模型以及更好地理解植物对光照条件变化的短期响应迈出了一步。