Suppr超能文献

中枢神经系统损伤后的神经回路修复。

Neural circuit repair after central nervous system injury.

作者信息

Tsujioka Hiroshi, Yamashita Toshihide

机构信息

Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

Int Immunol. 2021 Jun 7;33(6):301-309. doi: 10.1093/intimm/dxaa077.

Abstract

Central nervous system injury often causes lifelong impairment of neural function, because the regenerative ability of axons is limited, making a sharp contrast to the successful regeneration that is seen in the peripheral nervous system. Nevertheless, partial functional recovery is observed, because axonal branches of damaged or undamaged neurons sprout and form novel relaying circuits. Using a lot of animal models such as the spinal cord injury model or the optic nerve injury model, previous studies have identified many factors that promote or inhibit axonal regeneration or sprouting. Molecules in the myelin such as myelin-associated glycoprotein, Nogo-A or oligodendrocyte-myelin glycoprotein, or molecules found in the glial scar such as chondroitin sulfate proteoglycans, activate Ras homolog A (RhoA) signaling, which leads to the collapse of the growth cone and inhibit axonal regeneration. By contrast, axonal regeneration programs can be activated by many molecules such as regeneration-associated transcription factors, cyclic AMP, neurotrophic factors, growth factors, mechanistic target of rapamycin or immune-related molecules. Axonal sprouting and axonal regeneration largely share these mechanisms. For functional recovery, appropriate pruning or suppressing of aberrant sprouting are also important. In contrast to adults, neonates show much higher sprouting ability. Specific cell types, various mouse strains and different species show higher regenerative ability. Studies focusing on these models also identified a lot of molecules that affect the regenerative ability. A deeper understanding of the mechanisms of neural circuit repair will lead to the development of better therapeutic approaches for central nervous system injury.

摘要

中枢神经系统损伤常导致神经功能的终身损害,因为轴突的再生能力有限,这与周围神经系统中所见的成功再生形成鲜明对比。然而,仍可观察到部分功能恢复,这是因为受损或未受损神经元的轴突分支会发芽并形成新的中继回路。以往的研究利用许多动物模型,如脊髓损伤模型或视神经损伤模型,已经确定了许多促进或抑制轴突再生或发芽的因素。髓鞘中的分子,如髓鞘相关糖蛋白、Nogo-A或少突胶质细胞-髓鞘糖蛋白,或胶质瘢痕中发现的分子,如硫酸软骨素蛋白聚糖,会激活Ras同源物A(RhoA)信号通路,导致生长锥塌陷并抑制轴突再生。相比之下,许多分子,如再生相关转录因子、环磷酸腺苷、神经营养因子、生长因子、雷帕霉素作用靶点或免疫相关分子,可激活轴突再生程序。轴突发芽和轴突再生在很大程度上共享这些机制。为实现功能恢复,对异常发芽进行适当的修剪或抑制也很重要。与成年动物相比,新生动物表现出更高的发芽能力。特定的细胞类型、各种小鼠品系和不同物种表现出更高的再生能力。对这些模型的研究也确定了许多影响再生能力的分子。对神经回路修复机制的更深入理解将有助于开发更好的中枢神经系统损伤治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验