Cao Xin, Li Haifeng, Qiao Yu, Jia Min, Li Xiang, Cabana Jordi, Zhou Haoshen
Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan.
Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan.
Adv Mater. 2021 Jan;33(2):e2004280. doi: 10.1002/adma.202004280. Epub 2020 Dec 3.
Li-rich cathode materials are of significant interest for coupling anionic redox with cationic redox chemistry to achieve high-energy-density batteries. However, lattice oxygen loss and derived structure distortion would induce serious capacity loss and voltage decay, further hindering its practical application. Herein, a novel Li-rich cathode material, O3-type Li [Li Mn ]O , is developed with the pristine state displaying both a Li excess in the transition metal layer and a deficiency in the alkali metal layer. Benefiting from stable structure evolution and Li migration processes, not only can high reversible capacity (≈329 mAh g ) be harvested but also irreversible/reversible anionic/cationic redox reactions are comprehensively assigned via the combination of in/ex situ spectroscopies. Furthermore, irreversible lattice oxygen loss and structure distortion are effectively restrained, resulting in long-term cycle stability (capacity drop of 0.045% per cycle, 500 cycles). Altogether, tuning the Li state in the alkali metal layer presents a promising way for modification of high-capacity Li-rich cathode candidates.
富锂正极材料对于将阴离子氧化还原与阳离子氧化还原化学相结合以实现高能量密度电池具有重要意义。然而,晶格氧损失和由此产生的结构畸变会导致严重的容量损失和电压衰减,进一步阻碍其实际应用。在此,开发了一种新型富锂正极材料O3型Li[Li Mn]O,其原始状态在过渡金属层中表现出锂过量,而在碱金属层中表现出不足。受益于稳定的结构演变和锂迁移过程,不仅可以获得高可逆容量(≈329 mAh g),而且通过原位/非原位光谱学的结合全面确定了不可逆/可逆的阴离子/阳离子氧化还原反应。此外,有效地抑制了不可逆的晶格氧损失和结构畸变,从而实现了长期循环稳定性(每循环容量下降0.045%,500次循环)。总之,调节碱金属层中的锂状态为修饰高容量富锂正极候选材料提供了一种有前景的方法。