Lee Joong Bum, Walker Harriet, Li Yi, Nam Tae Won, Rakovich Aliaksandra, Sapienza Riccardo, Jung Yeon Sik, Nam Yoon Sung, Maier Stefan A, Cortés Emiliano
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.
ACS Nano. 2020 Dec 22;14(12):17693-17703. doi: 10.1021/acsnano.0c09319. Epub 2020 Dec 3.
Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.
将胶体纳米颗粒(NPs)确定性地定位和组装到基底上是一项核心要求,也是一种有前景的替代自上而下光刻技术的方法,用于创建具有引人入胜的光学、电学和催化特性的功能性纳米结构和纳米器件。为此,毛细管辅助颗粒组装(CAPA)已成为一种有吸引力的技术,因为它允许利用毛细管力将各种纳米颗粒可控且选择性地组装到预定义的地形模板上。然而,CAPA的一个关键问题在于其最后的印刷步骤,在该步骤中,只有使用粘性聚合物膜才能实现高印刷产率。为了解决这个问题,我们开发了一种模板溶解界面图案化(TDIP)技术,在不存在任何粘附层的情况下,将单个胶体金纳米颗粒阵列组装并印刷到各种介电和导电基底上,印刷产率高于98%。TDIP方法允许直接接触金纳米颗粒与目标表面之间的界面,从而能够将胶体金纳米颗粒用作实际应用的构建块。通过创建用于电化学和光电化学的直接电结以及用于单颗粒分子传感的镜上纳米颗粒几何结构,证明了TDIP的广泛适用性。