Faculty of Informatics, Universitá della Svizzera italiana, Lugano, Switzerland.
PLoS One. 2020 Dec 3;15(12):e0241797. doi: 10.1371/journal.pone.0241797. eCollection 2020.
Patent Citation Analysis has been gaining considerable traction over the past few decades. In this paper, we collect extensive information on patents and citations and provide a perspective of citation network analysis of patents from a statistical viewpoint. We identify and analyze the most cited patents, the most innovative and the highly cited companies along with the structural properties of the network by providing in-depth descriptive analysis. Furthermore, we employ Exponential Random Graph Models (ERGMs) to analyze the citation networks. ERGMs enables understanding the social perspectives of a patent citation network which has not been studied earlier. We demonstrate that social properties such as homophily (the inclination to cite patents from the same country or in the same language) and transitivity (the inclination to cite references' references) together with the technicalities of the patents (e.g., language, categories), has a significant effect on citations. We also provide an in-depth analysis of citations for sectors in patents and how it is affected by the size of the same. Overall, our paper delves into European patents with the aim of providing new insights and serves as an account for fitting ERGMs on large networks and analyzing them. ERGMs help us model network mechanisms directly, instead of acting as a proxy for unspecified dependence and relationships among the observations.
专利引文分析在过去几十年中受到了相当大的关注。在本文中,我们收集了广泛的专利和引文信息,并从统计角度提供了专利引文网络分析的视角。我们通过提供深入的描述性分析,确定和分析了最具引用价值的专利、最具创新性和高引用价值的公司,以及网络的结构特性。此外,我们还采用指数随机图模型(ERGMs)来分析引文网络。ERGMs 使我们能够理解以前没有研究过的专利引文网络的社会视角。我们证明了社会属性,如同质性(引用来自同一国家或同一语言的专利的倾向)和传递性(引用参考文献的倾向),以及专利的技术细节(例如语言、类别),对引文有显著影响。我们还深入分析了专利中各领域的引文情况,以及其如何受到同一领域规模的影响。总的来说,本文深入研究了欧洲专利,旨在提供新的见解,并为在大型网络上拟合 ERGMs 并对其进行分析提供了一个案例。ERGMs 帮助我们直接模拟网络机制,而不是作为未指定的观测值之间的依赖关系和关系的代理。