Suppr超能文献

前臂肌肉激活的维度分析用于桡骨截肢者的肌电控制。

Dimensionality analysis of forearm muscle activation for myoelectric control in transradial amputees.

机构信息

College of Medicine, University of Central Florida, Orlando, Florida, United States of America.

NeuroMechanical Systems Laboratory, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, United States of America.

出版信息

PLoS One. 2020 Dec 3;15(12):e0242921. doi: 10.1371/journal.pone.0242921. eCollection 2020.

Abstract

Establishing a natural communication interface between the user and the terminal device is one of the central challenges of hand neuroprosthetics research. Surface electromyography (EMG) is the most common source of neural signals for interpreting a user's intent in these interfaces. However, how the capacity of EMG generation is affected by various clinical parameters remains largely unknown. In this study, we examined the EMG activity of forearm muscles recorded from 11 transradially amputated subjects who performed a wide range of movements. EMG recordings from 40 able-bodied subjects were also analyzed to provide comparative benchmarks. By using non-negative matrix factorization, we extracted the synergistic EMG patterns for each subject to estimate the dimensionality of muscle control, under the framework of motor synergies. We found that amputees exhibited less than four synergies (with substantial variability related to the length of remaining limb and age), whereas able-bodied subjects commonly demonstrate five or more synergies. The results of this study provide novel insight into the muscle synergy framework and the design of natural myoelectric control interfaces.

摘要

建立用户和终端设备之间的自然通信接口是手神经假肢研究的核心挑战之一。表面肌电图 (EMG) 是这些接口中解释用户意图的最常用神经信号源。然而,EMG 产生的能力如何受到各种临床参数的影响在很大程度上仍是未知的。在这项研究中,我们检查了来自 11 名经桡骨截肢患者的前臂肌肉记录的 EMG 活动,这些患者进行了广泛的运动。还分析了 40 名健康受试者的 EMG 记录,以提供比较基准。通过使用非负矩阵分解,我们为每个受试者提取协同 EMG 模式,以根据运动协同的框架估计肌肉控制的维度。我们发现,截肢者表现出的协同作用少于四个(与剩余肢体的长度和年龄相关的变化很大),而健康受试者通常表现出五个或更多的协同作用。这项研究的结果为肌肉协同框架和自然肌电控制接口的设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5351/7714228/5f0a0e0a7cb8/pone.0242921.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验