Liu Xiwen, Chen Ruoyu, Sun Yujie, Chen Ran, Zhou Jie, Tian Qingnan, Tao Xuan, Zhang Zhang, Luo Guan-Zheng, Xie Wei
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, 510275, Guangdong, People's Republic of China.
Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.
BMC Biol. 2020 Dec 3;18(1):189. doi: 10.1186/s12915-020-00920-2.
The adenosine-to-inosine (A-to-I) editing in anticodons of tRNAs is critical for wobble base-pairing during translation. This modification is produced via deamination on A34 and catalyzed by the adenosine deaminase acting on tRNA (ADAT) enzyme. Eukaryotic ADATs are heterodimers composed of the catalytic subunit ADAT2 and the structural subunit ADAT3, but their molecular assemblies and catalytic mechanisms are largely unclear.
Here, we report a 2.8-Å crystal structure of Saccharomyces cerevisiae ADAT2/3 (ScADAT2/3), revealing its heterodimeric assembly and substrate recognition mechanism. While each subunit clearly contains a domain resembling their prokaryotic homolog TadA, suggesting an evolutionary gene duplication event, they also display accessory domains for additional structural or functional purposes. The N-lobe of ScADAT3 exhibits a positively charged region with a potential role in the recognition and binding of tRNA, supported by our biochemical analysis. Interestingly, ScADAT3 employs its C-terminus to block tRNA's entry into its pseudo-active site and thus inactivates itself for deamination despite the preservation of a zinc-binding site, a mechanism possibly shared only among yeasts.
Combining the structural with biochemical, bioinformatic, and in vivo functional studies, we propose a stepwise model for the pathway of deamination by ADAT2/3. Our work provides insight into the molecular mechanism of the A-to-I editing by the eukaryotic ADAT heterodimer, especially the role of ADAT3 in catalysis.
转运RNA(tRNA)反密码子中的腺苷到肌苷(A到I)编辑对于翻译过程中的摆动碱基配对至关重要。这种修饰是通过对A34进行脱氨作用产生的,并由作用于tRNA的腺苷脱氨酶(ADAT)催化。真核生物的ADAT是由催化亚基ADAT2和结构亚基ADAT3组成的异二聚体,但其分子组装和催化机制在很大程度上尚不清楚。
在此,我们报道了酿酒酵母ADAT2/3(ScADAT2/3)的2.8埃晶体结构,揭示了其异二聚体组装和底物识别机制。虽然每个亚基都明显包含一个类似于其原核同源物TadA的结构域,表明存在进化基因复制事件,但它们也展示了用于其他结构或功能目的的辅助结构域。我们的生化分析表明,ScADAT3的N叶表现出一个带正电荷的区域,可能在tRNA的识别和结合中发挥作用。有趣的是,ScADAT3利用其C末端阻止tRNA进入其假活性位点,从而使其自身失活以进行脱氨作用,尽管保留了锌结合位点,这可能是酵母特有的机制。
结合结构、生化、生物信息学和体内功能研究,我们提出了ADAT2/3脱氨途径的逐步模型。我们的工作深入了解了真核生物ADAT异二聚体进行A到I编辑的分子机制,特别是ADAT3在催化中的作用。