Henan International Joint Laboratory of Thrombosis and Hemostasis, School of Basic Medical Science, Henan University of Science and Technology, Luoyang, Henan, China; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA.
Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA.
J Biol Chem. 2021 Jan-Jun;296:100145. doi: 10.1074/jbc.RA120.015401. Epub 2020 Dec 10.
Vitamin K epoxide reductases (VKORs) constitute a major family of integral membrane thiol oxidoreductases. In humans, VKOR sustains blood coagulation and bone mineralization through the vitamin K cycle. Previous chemical models assumed that the catalysis of human VKOR (hVKOR) starts from a fully reduced active site. This state, however, constitutes only a minor cellular fraction (5.6%). Thus, the mechanism whereby hVKOR catalysis is carried out in the cellular environment remains largely unknown. Here we use quantitative mass spectrometry (MS) and electrophoretic mobility analyses to show that KO likely forms a covalent complex with a cysteine mutant mimicking hVKOR in a partially oxidized state. Trapping of this potential reaction intermediate suggests that the partially oxidized state is catalytically active in cells. To investigate this activity, we analyze the correlation between the cellular activity and the cellular cysteine status of hVKOR. We find that the partially oxidized hVKOR has considerably lower activity than hVKOR with a fully reduced active site. Although there are more partially oxidized hVKOR than fully reduced hVKOR in cells, these two reactive states contribute about equally to the overall hVKOR activity, and hVKOR catalysis can initiate from either of these states. Overall, the combination of MS quantification and biochemical analyses reveals the catalytic mechanism of this integral membrane enzyme in a cellular environment. Furthermore, these results implicate how hVKOR is inhibited by warfarin, one of the most commonly prescribed drugs.
维生素 K 环氧化物还原酶(VKORs)构成了主要的跨膜硫醇氧化还原酶家族。在人类中,VKOR 通过维生素 K 循环维持血液凝固和骨骼矿化。先前的化学模型假设,人 VKOR(hVKOR)的催化作用始于完全还原的活性部位。然而,这种状态仅构成细胞中很小的一部分(5.6%)。因此,hVKOR 催化作用在细胞环境中的机制在很大程度上仍然未知。在这里,我们使用定量质谱(MS)和电泳迁移率分析表明,KO 可能与模拟 hVKOR 部分氧化状态的半胱氨酸突变体形成共价复合物。这种潜在反应中间体的捕获表明,部分氧化状态在细胞中具有催化活性。为了研究这种活性,我们分析了细胞活性与 hVKOR 细胞半胱氨酸状态之间的相关性。我们发现,部分氧化的 hVKOR 的活性明显低于具有完全还原活性部位的 hVKOR。尽管细胞中部分氧化的 hVKOR 比完全还原的 hVKOR 多,但这两种反应状态对总体 hVKOR 活性的贡献大致相同,hVKOR 催化作用可以从这两种状态中的任何一种开始。总体而言,MS 定量和生化分析的结合揭示了这种整合膜酶在细胞环境中的催化机制。此外,这些结果表明了华法林(一种最常用的处方药物)如何抑制 hVKOR。