Kovaleva N N, Kusmartsev F V, Mekhiya A B, Trunkin I N, Chvostova D, Davydov A B, Oveshnikov L N, Pacherova O, Sherstnev I A, Kusmartseva A, Kugel K I, Dejneka A, Pudonin F A, Luo Y, Aronzon B A
Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK.
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russia.
Sci Rep. 2020 Dec 3;10(1):21172. doi: 10.1038/s41598-020-78185-6.
Localisation phenomena in highly disordered metals close to the extreme conditions determined by the Mott-Ioffe-Regel (MIR) limit when the electron mean free path is approximately equal to the interatomic distance is a challenging problem. Here, to shed light on these localisation phenomena, we studied the dc transport and optical conductivity properties of nanoscaled multilayered films composed of disordered metallic Ta and magnetic FeNi nanoisland layers, where ferromagnetic FeNi nanoislands have giant magnetic moments of 10[Formula: see text]-10[Formula: see text] Bohr magnetons ([Formula: see text]). In these multilayered structures, FeNi nanoisland giant magnetic moments are interacting due to the indirect exchange forces acting via the Ta electron subsystem. We discovered that the localisation phenomena in the disordered Ta layer lead to a decrease in the Drude contribution of free charge carriers and the appearance of the low-energy electronic excitations in the 1-2 eV spectral range characteristic of electronic correlations, which may accompany the formation of electronic inhomogeneities. From the consistent results of the dc transport and optical studies we found that with an increase in the FeNi layer thickness across the percolation threshold evolution from the superferromagnetic to ferromagnetic behaviour within the FeNi layer leads to the delocalisation of Ta electrons from the associated localised electronic states. On the contrary, we discovered that when the FeNi layer is discontinuous and represented by randomly distributed superparamagnetic FeNi nanoislands, the Ta layer normalized dc conductivity falls down below the MIR limit by about 60%. The discovered effect leading to the dc conductivity fall below the MIR limit can be associated with non-ergodicity and purely quantum (many-body) localisation phenomena, which need to be challenged further.
当电子平均自由程近似等于原子间距离时,在接近由莫特-约费-雷格尔(MIR)极限所确定的极端条件下,高度无序金属中的局域化现象是一个具有挑战性的问题。在此,为了阐明这些局域化现象,我们研究了由无序金属Ta和磁性FeNi纳米岛层组成的纳米级多层膜的直流输运和光导率特性,其中铁磁FeNi纳米岛具有10[公式:见正文]-10[公式:见正文]玻尔磁子([公式:见正文])的巨大磁矩。在这些多层结构中,FeNi纳米岛的巨大磁矩由于通过Ta电子子系统起作用的间接交换力而相互作用。我们发现,无序Ta层中的局域化现象导致自由电荷载流子的德鲁德贡献减小,并在1 - 2 eV光谱范围内出现具有电子关联特征的低能电子激发,这可能伴随着电子不均匀性的形成。从直流输运和光学研究的一致结果中我们发现,随着FeNi层厚度增加并超过渗流阈值,FeNi层内从超铁磁行为到铁磁行为的演变导致Ta电子从相关的局域电子态中离域。相反,我们发现当FeNi层不连续且由随机分布的超顺磁FeNi纳米岛表示时,Ta层的归一化直流电导率下降到低于MIR极限约60%。导致直流电导率下降到低于MIR极限的发现效应可能与非遍历性和纯量子(多体)局域化现象有关,这需要进一步研究。