Suppr超能文献

利用轻轨公共交通平台上的移动观测来约束城市 CO 排放。

Constraining Urban CO Emissions Using Mobile Observations from a Light Rail Public Transit Platform.

机构信息

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011, United States.

出版信息

Environ Sci Technol. 2020 Dec 15;54(24):15613-15621. doi: 10.1021/acs.est.0c04388. Epub 2020 Dec 4.

Abstract

Urban environments are characterized by pronounced spatiotemporal heterogeneity, which can present sampling challenges when utilizing conventional greenhouse gas (GHG) measurement systems. In Salt Lake City, Utah, a GHG instrument was deployed on a light rail train car that continuously traverses the Salt Lake Valley (SLV) through a range of urban typologies. CO measurements from a light rail train car were used within a Bayesian inverse modeling framework to constrain urban emissions across the SLV during the fall of 2015. The primary objectives of this study were to (1) evaluate whether ground-based mobile measurements could be used to constrain urban emissions using an inverse modeling framework and (2) quantify the information that mobile observations provided relative to conventional GHG monitoring networks. Preliminary results suggest that ingesting mobile measurements into an inverse modeling framework generated a posterior emission estimate that more closely aligned with observations, reduced posterior emission uncertainties, and extends the geographical extent of emission adjustments.

摘要

城市环境具有明显的时空异质性,这给利用传统温室气体(GHG)测量系统带来了采样挑战。在犹他州盐湖城,一台 GHG 仪器被部署在一辆轻轨列车上,该列车持续穿越盐湖谷(SLV),穿过一系列城市类型。在 2015 年秋季,利用轻轨列车上的 CO 测量值,在贝叶斯反演模型框架内,对 SLV 的城市排放进行了约束。本研究的主要目的是:(1)评估地面移动测量是否可以利用反演模型框架来约束城市排放;(2)量化移动观测相对于传统 GHG 监测网络提供的信息。初步结果表明,将移动测量值纳入反演模型框架中生成的后验排放估计值与观测值更吻合,降低了后验排放不确定性,并扩展了排放调整的地理范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验