Suppr超能文献

通过集成学习寻找下一种超硬材料。

Finding the Next Superhard Material through Ensemble Learning.

作者信息

Zhang Ziyan, Mansouri Tehrani Aria, Oliynyk Anton O, Day Blake, Brgoch Jakoah

机构信息

Department of Chemistry, University of Houston, Houston, TX, 77204, USA.

Department of Chemistry and Biochemistry, Manhattan College, Riverdale, NY, 10471, USA.

出版信息

Adv Mater. 2021 Feb;33(5):e2005112. doi: 10.1002/adma.202005112. Epub 2020 Dec 4.

Abstract

An ensemble machine-learning method is demonstrated to be capable of finding superhard materials by directly predicting the load-dependent Vickers hardness based only on the chemical composition. A total of 1062 experimentally measured load-dependent Vickers hardness data are extracted from the literature and used to train a supervised machine-learning algorithm utilizing boosting, achieving excellent accuracy (R  = 0.97). This new model is then tested by synthesizing and measuring the load-dependent hardness of several unreported disilicides and analyzing the predicted hardness of several classic superhard materials. The trained ensemble method is then employed to screen for superhard materials by examining more than 66 000 compounds in crystal structure databases, which show that 68 known materials have a Vickers hardness ≥40 GPa at 0.5 N (applied force) and only 10 exceed this mark at 5 N. The hardness model is then combined with the data-driven phase diagram generation tool to expand the limited number of reported high hardness compounds. Eleven ternary borocarbide phase spaces are studied, and more than ten thermodynamically favorable compositions with a hardness above 40 GPa (at 0.5 N) are identified, proving this ensemble model's ability to find previously unknown materials with outstanding mechanical properties.

摘要

一种集成机器学习方法被证明能够仅基于化学成分直接预测与载荷相关的维氏硬度,从而发现超硬材料。从文献中提取了总共1062个实验测量的与载荷相关的维氏硬度数据,并用于训练一种利用提升算法的监督机器学习算法,获得了优异的准确率(R = 0.97)。然后,通过合成和测量几种未报道的二硅化物的与载荷相关的硬度,并分析几种经典超硬材料的预测硬度,对这个新模型进行了测试。接着,使用训练好的集成方法通过检查晶体结构数据库中的66000多种化合物来筛选超硬材料,结果表明,68种已知材料在0.5 N(施加力)时维氏硬度≥40 GPa,而在5 N时只有10种超过这个标准。然后将硬度模型与数据驱动的相图生成工具相结合,以扩展已报道的高硬度化合物的有限数量。研究了11个三元硼碳化物相空间,识别出了十多种硬度高于40 GPa(在0.5 N时)的热力学有利成分,证明了这种集成模型发现具有优异机械性能的未知材料的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验