Suppr超能文献

用于高效最小化ALD钝化层缺陷的贝叶斯机器学习

Bayesian Machine Learning for Efficient Minimization of Defects in ALD Passivation Layers.

作者信息

Dogan Gül, Demir Sinan O, Gutzler Rico, Gruhn Herbert, Dayan Cem B, Sanli Umut T, Silber Christian, Culha Utku, Sitti Metin, Schütz Gisela, Grévent Corinne, Keskinbora Kahraman

机构信息

Robert Bosch GmbH, Automotive Electronics, Postfach 13 42, 72703 Reutlingen, Germany.

Max Planck Institute for Intelligent Systems, Heisenbergstr 3, 70569 Stuttgart, Germany.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 17;13(45):54503-54515. doi: 10.1021/acsami.1c14586. Epub 2021 Nov 4.

Abstract

Atomic layer deposition (ALD) is an enabling technology for encapsulating sensitive materials owing to its high-quality, conformal coating capability. Finding the optimum deposition parameters is vital to achieving defect-free layers; however, the high dimensionality of the parameter space makes a systematic study on the improvement of the protective properties of ALD films challenging. Machine-learning (ML) methods are gaining credibility in materials science applications by efficiently addressing these challenges and outperforming conventional techniques. Accordingly, this study reports the ML-based minimization of defects in an ALD-AlO passivation layer for the corrosion protection of metallic copper using Bayesian optimization (BO). In all experiments, BO consistently minimizes the layer defect density by finding the optimum deposition parameters in less than three trials. Electrochemical tests show that the optimized layers have virtually zero film porosity and achieve five orders of magnitude reduction in corrosion current as compared to control samples. Optimized parameters of surface pretreatment using Ar/H plasma, the deposition temperature above 200 °C, and 60 ms pulse time quadruple the corrosion resistance. The significant optimization of ALD layers presented in this study demonstrates the effectiveness of BO and its potential outreach to a broader audience, focusing on different materials and processes in materials science applications.

摘要

原子层沉积(ALD)因其高质量的保形涂层能力,是一种用于封装敏感材料的赋能技术。找到最佳沉积参数对于获得无缺陷层至关重要;然而,参数空间的高维度使得对提高ALD薄膜保护性能进行系统研究具有挑战性。机器学习(ML)方法通过有效应对这些挑战并优于传统技术,在材料科学应用中越来越受到认可。因此,本研究报告了使用贝叶斯优化(BO)基于ML将ALD-AlO钝化层中的缺陷最小化,以保护金属铜免受腐蚀。在所有实验中,BO通过在少于三次试验中找到最佳沉积参数,始终将层缺陷密度最小化。电化学测试表明,与对照样品相比,优化后的层几乎具有零膜孔隙率,并且腐蚀电流降低了五个数量级。使用Ar/H等离子体进行表面预处理的优化参数、高于200°C的沉积温度和60 ms的脉冲时间使耐腐蚀性提高了四倍。本研究中对ALD层的显著优化证明了BO的有效性及其在更广泛领域的潜力,专注于材料科学应用中的不同材料和工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验