Hammad Raheel, Mondal Sownyak
Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India.
ACS Omega. 2023 Dec 29;9(1):1956-1961. doi: 10.1021/acsomega.3c08861. eCollection 2024 Jan 9.
Auxetics are a rare class of materials that exhibit a negative Poisson's ratio. The existence of these auxetic materials is rare but has a large number of applications in the design of exotic materials. We build a complete machine learning framework to detect Auxetic materials as well as Poisson's ratio of non-auxetic materials. A semisupervised anomaly detection model is presented, which is capable of separating out the auxetics materials (treated as an anomaly) from an unknown database with an average precision of 0.64. Another regression model (supervised) is also created to predict the Poisson's ratio of non-auxetic materials with an of 0.82. Additionally, this regression model helps us to find the optimal features for the anomaly detection model. This methodology can be generalized and used to discover materials with rare physical properties.
负泊松比材料是一类罕见的材料,其泊松比为负。这些负泊松比材料虽然罕见,但在新型材料设计中有大量应用。我们构建了一个完整的机器学习框架来检测负泊松比材料以及非负泊松比材料的泊松比。提出了一种半监督异常检测模型,该模型能够从未知数据库中分离出负泊松比材料(视为异常),平均精度为0.64。还创建了另一个回归模型(有监督)来预测非负泊松比材料的泊松比,相关系数为0.82。此外,该回归模型帮助我们找到异常检测模型的最优特征。这种方法可以推广并用于发现具有罕见物理特性的材料。