Suppr超能文献

机器学习支持对尿布中粪便稠度进行自动数字图像评分。

Machine Learning Supports Automated Digital Image Scoring of Stool Consistency in Diapers.

作者信息

Ludwig Thomas, Oukid Ines, Wong Jill, Ting Steven, Huysentruyt Koen, Roy Puspita, Foussat Agathe C, Vandenplas Yvan

机构信息

Danone Nutricia Research, Precision Nutrition D-lab, Biopolis, Singapore.

Danone Research, Palaiseau, France.

出版信息

J Pediatr Gastroenterol Nutr. 2021 Feb 1;72(2):255-261. doi: 10.1097/MPG.0000000000003007.

Abstract

BACKGROUND/AIMS: Accurate stool consistency classification of non-toilet-trained children remains challenging. This study evaluated the feasibility of automated classification of stool consistencies from diaper photos using machine learning (ML).

METHODS

In total, 2687 usable smartphone photos of diapers with stool from 96 children younger than 24 months were obtained after independent ethical study approval. Stool consistency was assessed from each photo according to the original 7 types of the Brussels Infant and Toddler Stool Scale independently by study participants and 2 researchers. A health care professional assigned a final score in case of scoring disagreement between the researchers. A proof-of-concept ML model was built upon this collected photo database, using transfer learning to re-train the classification layer of a pretrained deep convolutional neural network model. The model was built on random training (n = 2478) and test (n = 209) subsets.

RESULTS

Agreements between study participants and both researchers were 58.0% and 48.5%, respectively, and between researchers 77.5% (assessable n = 2366). The model classified 60.3% of the test photos in exact agreement with the final score. With respect to the 4-class grouping of the 7 Brussels Infant and Toddler Stool Scale types, the agreement between model-based and researcher classification was 77.0%.

CONCLUSION

The automated and objective scoring of stool consistency from diaper photos by the ML model shows robust agreement with human raters and overcomes limitations of other methods relying on caregiver reporting. Integrated with a smartphone application, this new framework for photo database construction and ML classification has numerous potential applications in clinical studies and home assessment.

摘要

背景/目的:对尚未接受如厕训练的儿童进行准确的粪便稠度分类仍然具有挑战性。本研究评估了使用机器学习(ML)从尿布照片自动分类粪便稠度的可行性。

方法

在获得独立伦理研究批准后,共获取了96名24个月以下儿童的2687张带有粪便的可用智能手机尿布照片。研究参与者和两名研究人员根据布鲁塞尔婴幼儿粪便量表最初的7种类型,对每张照片中的粪便稠度进行独立评估。在研究人员评分出现分歧时,由一名医疗保健专业人员给出最终评分。基于这个收集到的照片数据库构建了一个概念验证ML模型,使用迁移学习对预训练的深度卷积神经网络模型的分类层进行重新训练。该模型基于随机训练(n = 2478)和测试(n = 209)子集构建。

结果

研究参与者与两名研究人员之间的一致性分别为58.0%和48.5%,研究人员之间的一致性为77.5%(可评估n = 2366)。该模型对60.3%的测试照片的分类与最终评分完全一致。对于布鲁塞尔婴幼儿粪便量表7种类型的4类分组,基于模型的分类与研究人员分类之间的一致性为77.0%。

结论

ML模型从尿布照片中对粪便稠度进行自动和客观评分,与人工评分者表现出高度一致性,克服了其他依赖照顾者报告的方法的局限性。与智能手机应用程序相结合,这个用于照片数据库构建和ML分类的新框架在临床研究和家庭评估中有许多潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e3/7815249/4ca6f4ccf91d/jpga-72-255-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验