Suppr超能文献

基于计算拓扑学框架的生物医学图像分割。

Segmentation of biomedical images based on a computational topology framework.

机构信息

Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany.

Statistical Physics and Theoretical Biophysics Group, Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, Heidelberg, 69120, Germany.

出版信息

Semin Immunol. 2020 Apr;48:101432. doi: 10.1016/j.smim.2020.101432. Epub 2020 Dec 2.

Abstract

The homology groups of a topological space provide us with information about its connectivity and the number and type of holes in it. This type of information can find practical applications in describing the intrinsic structure of an image, as well as in identifying equivalence classes in collections of images. When computing homological characteristics, the existence and strength of the relationships between each pair of points in the topological space are studied. The practical use of this approach begins by building a topological space from the image, in which the computation of the homology groups can be carried out in a feasible time. Once the homological properties are obtained, what follows is the task of translating such information into operations such as image segmentation. This work presents a technique for denoising persistent diagrams and reconstructing the shape of segmented objects using the remaining classes on the diagram. A case study for the segmentation of cell nuclei in histological images is used for demonstration purposes. With this approach: a) topological denoising is achieved by aggregating trivial classes on the persistence diagram, and b) a growing seed algorithm uses the information obtained during the construction of the persistence diagram for the reconstruction of the segmented cell structures.

摘要

拓扑空间的同调群为我们提供了关于其连通性以及其中的孔的数量和类型的信息。这种类型的信息可以在描述图像的固有结构以及识别图像集合中的等价类方面找到实际应用。在计算同调特征时,研究拓扑空间中每对点之间的关系的存在和强度。这种方法的实际应用首先从图像构建拓扑空间开始,在该空间中可以在可行的时间内进行同调群的计算。一旦获得同调性质,接下来的任务就是将这些信息转换为图像分割等操作。这项工作提出了一种用于去噪持久图并使用图上剩余类重建分割对象形状的技术。使用组织学图像中细胞核的分割作为案例研究来说明。通过这种方法:a)通过在持久图上聚合平凡类来实现拓扑去噪,b)使用在构建持久图期间获得的信息的生长种子算法来重建分割的细胞结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验