Suppr超能文献

XBP1将12小时生物钟与非酒精性脂肪性肝病以及膜流动性和脂质稳态的调节联系起来。

XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis.

作者信息

Meng Huan, Gonzales Naomi M, Lonard David M, Putluri Nagireddy, Zhu Bokai, Dacso Clifford C, York Brian, O'Malley Bert W

机构信息

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.

Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

出版信息

Nat Commun. 2020 Dec 4;11(1):6215. doi: 10.1038/s41467-020-20028-z.

Abstract

A distinct 12-hour clock exists in addition to the 24-hour circadian clock to coordinate metabolic and stress rhythms. Here, we show that liver-specific ablation of X-box binding protein 1 (XBP1) disrupts the hepatic 12-hour clock and promotes spontaneous non-alcoholic fatty liver disease (NAFLD). We show that hepatic XBP1 predominantly regulates the 12-hour rhythmicity of gene transcription in the mouse liver and demonstrate that perturbation of the 12-hour clock, but not the core circadian clock, is associated with the onset and progression of this NAFLD phenotype. Mechanistically, we provide evidence that the spliced form of XBP1 (XBP1s) binds to the hepatic 12-hour cistrome to directly regulate the 12-hour clock, with a periodicity paralleling the harmonic activation of the 12-hour oscillatory transcription of many rate-limiting metabolic genes known to have perturbations in human metabolic disease. Functionally, we show that Xbp1 ablation significantly reduces cellular membrane fluidity and impairs lipid homeostasis via rate-limiting metabolic processes in fatty acid monounsaturated and phospholipid remodeling pathways. These findings reveal that genetic disruption of the hepatic 12-hour clock links to the onset and progression of NAFLD development via transcriptional regulator XBP1, and demonstrate a role for XBP1 and the 12-hour clock in the modulation of phospholipid composition and the maintenance of lipid homeostasis.

摘要

除了24小时的昼夜节律钟外,还存在一个独特的12小时时钟来协调代谢和应激节律。在此,我们表明肝脏特异性敲除X盒结合蛋白1(XBP1)会破坏肝脏的12小时时钟,并促进自发性非酒精性脂肪性肝病(NAFLD)。我们表明,肝脏中的XBP1主要调节小鼠肝脏中基因转录的12小时节律性,并证明12小时时钟的紊乱而非核心昼夜节律钟的紊乱与这种NAFLD表型的发生和进展有关。从机制上讲,我们提供的证据表明,XBP1的剪接形式(XBP1s)与肝脏的12小时顺反组结合,直接调节12小时时钟,其周期性与许多已知在人类代谢疾病中受到干扰的限速代谢基因的12小时振荡转录的谐波激活平行。在功能上,我们表明Xbp1敲除显著降低细胞膜流动性,并通过脂肪酸单不饱和和磷脂重塑途径中的限速代谢过程损害脂质稳态。这些发现揭示,肝脏12小时时钟的基因破坏通过转录调节因子XBP1与NAFLD发展的发生和进展相关,并证明XBP1和12小时时钟在调节磷脂组成和维持脂质稳态中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc8/7718229/7df5b718c0b7/41467_2020_20028_Fig1_HTML.jpg

相似文献

1
XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis.
Nat Commun. 2020 Dec 4;11(1):6215. doi: 10.1038/s41467-020-20028-z.
2
Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet.
Am J Physiol Gastrointest Liver Physiol. 2015 Dec 15;309(12):G965-74. doi: 10.1152/ajpgi.00132.2015. Epub 2015 Oct 15.
3
Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis.
Exp Mol Med. 2019 Sep 20;51(9):1-11. doi: 10.1038/s12276-019-0309-0.
4
Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis.
J Hepatol. 2022 Aug;77(2):312-325. doi: 10.1016/j.jhep.2022.02.031. Epub 2022 Mar 12.
5
FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease.
J Hepatol. 2021 Jul;75(1):150-162. doi: 10.1016/j.jhep.2021.01.042. Epub 2021 Feb 4.
6
Defining the mammalian coactivation of hepatic 12-h clock and lipid metabolism.
Cell Rep. 2022 Mar 8;38(10):110491. doi: 10.1016/j.celrep.2022.110491.
7
Obesity disrupts the pituitary-hepatic UPR communication leading to NAFLD progression.
Cell Metab. 2024 Jul 2;36(7):1550-1565.e9. doi: 10.1016/j.cmet.2024.04.014. Epub 2024 May 7.
8
A Cell-Autonomous Mammalian 12 hr Clock Coordinates Metabolic and Stress Rhythms.
Cell Metab. 2017 Jun 6;25(6):1305-1319.e9. doi: 10.1016/j.cmet.2017.05.004.
9
The biological clock enhancer nobiletin ameliorates steatosis in genetically obese mice by restoring aberrant hepatic circadian rhythm.
Am J Physiol Gastrointest Liver Physiol. 2022 Oct 1;323(4):G387-G400. doi: 10.1152/ajpgi.00130.2022. Epub 2022 Aug 23.

引用本文的文献

1
SON-dependent nuclear speckle rehabilitation alleviates proteinopathies.
Nat Commun. 2025 Aug 5;16(1):7065. doi: 10.1038/s41467-025-62242-7.
2
Biological rhythms: Living your life, one half-day at a time.
NPJ Biol Timing Sleep. 2025;2(1):21. doi: 10.1038/s44323-025-00037-1. Epub 2025 Jun 3.
3
Editorial: Biological rhythms in the brain and gastrointestinal tract.
Front Physiol. 2025 May 15;16:1622475. doi: 10.3389/fphys.2025.1622475. eCollection 2025.
5
Twelve-hour ultradian rhythmic reprogramming of gene expression in the human ovary during aging.
J Assist Reprod Genet. 2025 Feb;42(2):545-561. doi: 10.1007/s10815-024-03339-8. Epub 2025 Jan 23.
6
Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology.
Front Physiol. 2024 Nov 20;15:1497836. doi: 10.3389/fphys.2024.1497836. eCollection 2024.
7
Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders.
NPJ Biol Timing Sleep. 2024;1(1):11. doi: 10.1038/s44323-024-00012-2. Epub 2024 Nov 1.
8
Roles of X-box binding protein 1 in liver pathogenesis.
Clin Mol Hepatol. 2025 Jan;31(1):1-31. doi: 10.3350/cmh.2024.0441. Epub 2024 Oct 2.
9
Epigenetic regulation of global proteostasis dynamics by RBBP5 ensures mammalian organismal health.
bioRxiv. 2024 Sep 13:2024.09.13.612812. doi: 10.1101/2024.09.13.612812.
10
Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders.
Res Sq. 2024 Aug 8:rs.3.rs-4707772. doi: 10.21203/rs.3.rs-4707772/v1.

本文引用的文献

1
Progress and challenges in analyzing rodent energy expenditure.
Nat Methods. 2019 Sep;16(9):797-799. doi: 10.1038/s41592-019-0513-9.
2
An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases.
Int J Mol Sci. 2019 Mar 6;20(5):1149. doi: 10.3390/ijms20051149.
3
Phospholipid Remodeling in Physiology and Disease.
Annu Rev Physiol. 2019 Feb 10;81:165-188. doi: 10.1146/annurev-physiol-020518-114444. Epub 2018 Oct 31.
4
A novel mathematical method for disclosing oscillations in gene transcription: A comparative study.
PLoS One. 2018 Sep 19;13(9):e0198503. doi: 10.1371/journal.pone.0198503. eCollection 2018.
5
Here, there, and everywhere: The importance of ER membrane contact sites.
Science. 2018 Aug 3;361(6401). doi: 10.1126/science.aan5835.
6
CalR: A Web-Based Analysis Tool for Indirect Calorimetry Experiments.
Cell Metab. 2018 Oct 2;28(4):656-666.e1. doi: 10.1016/j.cmet.2018.06.019. Epub 2018 Jul 12.
7
Membrane properties that shape the evolution of membrane enzymes.
Curr Opin Struct Biol. 2018 Aug;51:80-91. doi: 10.1016/j.sbi.2018.03.013. Epub 2018 Mar 27.
8
Novel metabolic phenotypes in lecithin cholesterol acyltyransferase-deficient mice.
Curr Opin Lipidol. 2018 Apr;29(2):104-109. doi: 10.1097/MOL.0000000000000486.
9
Host-derived fatty acids activate type VII secretion in .
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11223-11228. doi: 10.1073/pnas.1700627114. Epub 2017 Oct 2.
10
ER phospholipid composition modulates lipogenesis during feeding and in obesity.
J Clin Invest. 2017 Oct 2;127(10):3640-3651. doi: 10.1172/JCI93616. Epub 2017 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验