The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
Nat Commun. 2020 Dec 4;11(1):6233. doi: 10.1038/s41467-020-19990-5.
The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.
KEOPS 复合物在古菌和真核生物中都保守,由四个核心亚基组成; Pcc1、Kae1、Bud32 和 Cgi121。KEOPS 对所有被检查的生物的适应性至关重要。在人类中,KEOPS 基因的致病突变导致 Galloway-Mowat 综合征,这是一种常染色体隐性疾病,导致儿童死亡。Kae1 催化普遍且必需的 tRNA 修饰 N-硫代羰基腺苷,但所有其他 KEOPS 亚基的确切作用仍然是一个谜。在这里,我们使用结构导向研究表明 Cgi121 通过与 tRNA 的 3' CCA 尾巴结合来招募 tRNA 到 KEOPS。与 tRNA 结合的 KEOPS 复合模型表明,所有 KEOPS 亚基形成一个扩展的 tRNA 结合表面,我们已经在体外和体内验证了该表面介导与 tRNA 底物及其修饰的相互作用。这些发现为理解 KEOPS 的内部工作原理提供了一个框架,并阐明了为什么所有 KEOPS 亚基都是必需的。