Suppr超能文献

介绍用于量化核酸及核酸-蛋白质复合物亲水性的PARCH量表。

Introducing the PARCH Scale for Quantifying the Hydropathy of Nucleic Acids and Nucleic Acid-Protein Complexes.

作者信息

Mandal Ratnakshi, Ji Jingjing, Sheridan Claire Nicole, Baur Anna M, Noel Andre Christophe, Nangia Shikha

机构信息

Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.

出版信息

Langmuir. 2025 Jul 8;41(26):16874-16886. doi: 10.1021/acs.langmuir.5c01051. Epub 2025 Jun 18.

Abstract

Hydropathy studies have been extensively conducted for proteins, offering valuable insights into their structure and functionality. However, there is far less understanding of the hydropathy associated with the tertiary and quaternary structures of nucleic acids─such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)─and their interactions with proteins. In this work, we extend our recently developed Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) scale to nucleic acids and nucleic acid-protein complexes. The PARCH scale quantifies the hydropathy of each nucleic acid residue based on its chemical identity and topographical features. The PARCH analysis for both DNA and RNA reveals that the backbone, consisting of phosphate and sugar atoms, is significantly more hydrophilic than the nucleotide bases; backbone PARCH values are an order of magnitude higher than those of the bases. In DNA, distortions from the organized double-helical structure, such as base flipping or altered base pairing, increase the hydropathy values. With its greater structural complexity, RNA exhibits a broader range of hydropathy values than DNA, reflecting its increased interaction with water. Thus, based on the PARCH values, RNA is more hydrophilic than DNA on average. PARCH analysis of DNA-protein and RNA-protein complexes reveals intricate binding patterns, including interactions between charged amino acid residues and the hydrophilic nucleic acid backbone, as well as hydrophobic patches on proteins engaging with the hydrophobic grooves of nucleic acid bases. These findings highlight the potential of PARCH analysis to provide valuable insights into the underlying principles of nucleic acid-protein interactions. The PARCH scale shows promise as a useful tool for advancing the development of functional RNA and DNA fragments for future therapeutic applications.

摘要

人们已经对蛋白质进行了广泛的亲水性研究,这为了解其结构和功能提供了宝贵的见解。然而,对于与核酸(如脱氧核糖核酸(DNA)和核糖核酸(RNA))的三级和四级结构相关的亲水性及其与蛋白质的相互作用,人们的了解要少得多。在这项工作中,我们将我们最近开发的基于亲水性(PARCH)量表确定残基特征的方法扩展到核酸和核酸-蛋白质复合物。PARCH量表根据每个核酸残基的化学特性和拓扑特征对其亲水性进行量化。对DNA和RNA的PARCH分析表明,由磷酸和糖原子组成的主链比核苷酸碱基明显更具亲水性;主链的PARCH值比碱基的PARCH值高一个数量级。在DNA中,有组织的双螺旋结构的扭曲,如碱基翻转或碱基配对改变,会增加亲水性值。由于其结构更复杂,RNA的亲水性值范围比DNA更广,这反映了其与水的相互作用增加。因此,根据PARCH值,RNA平均比DNA更具亲水性。对DNA-蛋白质和RNA-蛋白质复合物的PARCH分析揭示了复杂的结合模式,包括带电荷的氨基酸残基与亲水性核酸主链之间的相互作用,以及蛋白质上与核苷酸碱基疏水凹槽相互作用的疏水区域。这些发现突出了PARCH分析在提供有关核酸-蛋白质相互作用潜在原理的宝贵见解方面的潜力。PARCH量表有望成为推进功能性RNA和DNA片段开发以用于未来治疗应用的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验