Suppr超能文献

共生关系的一致性依赖于局部,而不是更广泛的社区生物多样性。

Consistency in mutualism relies on local, rather than wider community biodiversity.

机构信息

School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.

Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.

出版信息

Sci Rep. 2020 Dec 4;10(1):21255. doi: 10.1038/s41598-020-78318-x.

Abstract

Mutualistic interactions play a major role in shaping the Earth's biodiversity, yet the consistent drivers governing these beneficial interactions are unknown. Using a long-term (8 year, including > 256 h behavioural observations) dataset of the interaction patterns of a service-resource mutualism (the cleaner-client interaction), we identified consistent and dynamic predictors of mutualistic outcomes. We showed that cleaning was consistently more frequent when the presence of third-party species and client partner abundance locally increased (creating choice options), whilst partner identity regulated client behaviours. Eight of our 12 predictors of cleaner and client behaviour played a dynamic role in predicting both the quality (duration) and quantity (frequency) of interactions, and we suggest that the environmental context acting on these predictors at a specific time point will indirectly regulate their role in cleaner-client interaction patterns: context-dependency can hence regulate mutualisms both directly and indirectly. Together our study highlights that consistency in cleaner-client mutualisms relies strongly on the local, rather than wider community-with biodiversity loss threatening all environments this presents a worrying future for the pervasiveness of mutualisms.

摘要

互利共生相互作用在塑造地球生物多样性方面起着重要作用,但控制这些有益相互作用的一致驱动因素尚不清楚。本研究利用服务-资源互利共生(清洁共生体-客户关系)的长期(8 年,包括超过 256 小时的行为观察)数据集,确定了互利共生结果的一致和动态预测因子。研究表明,当本地第三方物种的存在和客户伴侣丰度增加(创造选择选项)时,清洁行为更频繁,而伴侣身份调节客户行为。在预测清洁共生体和客户行为方面,我们的 12 个预测因子中有 8 个发挥了动态作用,预测了相互作用的质量(持续时间)和数量(频率),并且我们认为在特定时间点作用于这些预测因子的环境背景将间接调节它们在清洁共生体-客户关系模式中的作用:因此,上下文依赖性可以直接和间接调节共生关系。本研究强调,清洁共生体的一致性强烈依赖于本地环境,而不是更广泛的群落——随着生物多样性的丧失威胁着所有环境,这为共生关系的普遍存在带来了一个令人担忧的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/549c/7718221/2ba6e643932b/41598_2020_78318_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验