Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Clin Cardiol. 2021 Feb;44(2):193-199. doi: 10.1002/clc.23525.
While many interventions to reduce hospital admissions and emergency department (ED) visits for patients with cardiovascular disease have been developed, identifying ambulatory cardiac patients at high risk for admission can be challenging.
A computational model based on readily accessible clinical data can identify patients at risk for admission.
Electronic health record (EHR) data from a tertiary referral center were used to generate decision tree and logistic regression models. International Classification of Disease (ICD) codes, labs, admissions, medications, vital signs, and socioenvironmental variables were used to model risk for ED presentation or hospital admission within 90 days following a cardiology clinic visit. Model training and testing were performed with a 70:30 data split. The final model was then prospectively validated.
A total of 9326 patients and 46 465 clinic visits were analyzed. A decision tree model using 75 patient characteristics achieved an area under the curve (AUC) of 0.75 and a logistic regression model achieved an AUC of 0.73. A simplified 9-feature model based on logistic regression odds ratios achieved an AUC of 0.72. A further simplified numerical score assigning 1 or 2 points to each variable achieved an AUC of 0.66, specificity of 0.75, and sensitivity of 0.58. Prospectively, this final model maintained its predictive performance (AUC 0.63-0.60).
Nine patient characteristics from routine EHR data can be used to inform a highly specific model for hospital admission or ED presentation in cardiac patients. This model can be simplified to a risk score that is easily calculated and retains predictive performance.
虽然已经开发出许多旨在减少心血管疾病患者住院和急诊就诊的干预措施,但识别有住院风险的门诊心脏患者可能具有挑战性。
基于易于获取的临床数据的计算模型可以识别有住院风险的患者。
使用三级转诊中心的电子健康记录 (EHR) 数据生成决策树和逻辑回归模型。国际疾病分类 (ICD) 代码、实验室检查、入院、药物、生命体征和社会环境变量用于在心脏病学诊所就诊后 90 天内建模急诊就诊或住院的风险。使用 70:30 的数据分割进行模型训练和测试。然后对最终模型进行前瞻性验证。
共分析了 9326 名患者和 46465 次就诊。使用 75 个患者特征的决策树模型获得了 0.75 的曲线下面积 (AUC),逻辑回归模型获得了 0.73 的 AUC。基于逻辑回归优势比的简化 9 个特征模型获得了 0.72 的 AUC。进一步简化的数字评分方案为每个变量分配 1 或 2 分,获得了 0.66 的 AUC、0.75 的特异性和 0.58 的敏感性。前瞻性地,该最终模型保持了其预测性能 (AUC 0.63-0.60)。
常规 EHR 数据中的 9 个患者特征可用于告知心脏患者住院或急诊就诊的高度特异模型。该模型可以简化为易于计算且保留预测性能的风险评分。