Suppr超能文献

超声辅助血管内激光溶栓联合高强度聚焦超声。

Ultrasound-assisted laser thrombolysis with endovascular laser and high-intensity focused ultrasound.

机构信息

Vesarex LLC, Lawrence, KS, 66047, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.

出版信息

Med Phys. 2021 Feb;48(2):579-586. doi: 10.1002/mp.14636. Epub 2020 Dec 18.

Abstract

PURPOSE

The combination of laser and ultrasound can significantly improve the efficiency of thrombolysis through an enhanced cavitation effect. We developed a fiber optics-based laser-ultrasound thrombolysis device and tested the feasibility and efficiency of this technology for restoring blood flow in an in vitro blood clot model.

METHODS

An in vitro blood flow-clot model was setup, and then an endovascular laser thrombolysis system was combined with high-intensity focused ultrasound to remove the clot. The laser and ultrasound pulses were synchronized and delivered to the blood clot concurrently. The laser pulses of 532 nm were delivered to the blood clot endovascularly through an optical fiber, whereas the ultrasound pulses of 0.5 MHz were applied noninvasively to the same region. Effectiveness of thrombolysis was evaluated by the ability to restore blood flow, which was monitored by ultrasound Doppler.

RESULTS

As laser powers increased, the ultrasound threshold pressures for effective thrombolysis decreased. For laser fluence levels of 0, 2, and 4 mJ/cm , the average negative ultrasound threshold pressures were 1.26 ± 0.114, 1.05 ± 0.181, and 0.59 ± 0.074 MPa, respectively. The periods of time needed to achieve effective thrombolysis were measured at 0.8, 2, and 4 mJ/cm laser fluence levels and 0.42, 0.70, and 0.98 MPa negative ultrasound pressures. In general, thrombolysis could be achieved more rapidly with higher laser powers or ultrasound pressures.

CONCLUSIONS

Effective thrombolysis can be achieved by combining endovascular laser with noninvasive ultrasound at relatively low power and pressure levels, which can potentially improve both the treatment efficiency and safety.

摘要

目的

激光与超声的联合应用可通过增强空化效应显著提高溶栓效率。我们研发了一种基于光纤的激光-超声溶栓装置,并在体外血栓模型中测试了该技术恢复血流的可行性和效率。

方法

建立了体外血流-血栓模型,然后将血管内激光溶栓系统与高强度聚焦超声联合使用以清除血栓。激光和超声脉冲同步发送至血栓部位,同时进行作用。532nm 的激光脉冲通过光纤经血管内输送至血栓部位,而 0.5MHz 的超声脉冲则经非侵入式施加于同一区域。通过超声多普勒监测血流恢复情况评估溶栓效果。

结果

随着激光功率的增加,有效溶栓所需的超声阈值压力降低。对于激光能量密度分别为 0、2 和 4mJ/cm² 的情况,平均负超声阈值压力分别为 1.26±0.114、1.05±0.181 和 0.59±0.074MPa。在激光能量密度为 0.8、2 和 4mJ/cm²,负超声压力为 0.42、0.70 和 0.98MPa 的情况下,测量达到有效溶栓所需的时间。通常,随着激光功率或超声压力的增加,溶栓可以更快实现。

结论

在相对较低的功率和压力水平下,通过将血管内激光与非侵入性超声相结合,可以实现有效的溶栓,这可能会提高治疗效率和安全性。

相似文献

1
Ultrasound-assisted laser thrombolysis with endovascular laser and high-intensity focused ultrasound.
Med Phys. 2021 Feb;48(2):579-586. doi: 10.1002/mp.14636. Epub 2020 Dec 18.
2
The feasibility of ultrasound-assisted endovascular laser thrombolysis in an acute rabbit thrombosis model.
Med Phys. 2021 Aug;48(8):4128-4138. doi: 10.1002/mp.15068. Epub 2021 Jul 20.
3
In vitro and in vivo high-intensity focused ultrasound thrombolysis.
Invest Radiol. 2012 Apr;47(4):217-25. doi: 10.1097/RLI.0b013e31823cc75c.
4
Laser enhanced high-intensity focused ultrasound thrombolysis: an in vitro study.
J Acoust Soc Am. 2013 Feb;133(2):EL123-8. doi: 10.1121/1.4778375.
5
Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy).
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1342-55. doi: 10.1109/TUFFC.2015.007016.
6
Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model.
J Vasc Interv Radiol. 2011 Mar;22(3):369-77. doi: 10.1016/j.jvir.2010.10.007. Epub 2010 Dec 30.
7
Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex.
Ultrasound Med Biol. 2022 Sep;48(9):1907-1917. doi: 10.1016/j.ultrasmedbio.2022.05.021. Epub 2022 Jun 25.
8
Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy.
Ultrasound Med Biol. 2009 Dec;35(12):1982-94. doi: 10.1016/j.ultrasmedbio.2009.07.001. Epub 2009 Oct 24.
9
Laser thrombolysis using long pulse frequency-doubled Nd:YAG lasers.
Lasers Surg Med. 1999;25(5):379-88. doi: 10.1002/(sici)1096-9101(1999)25:5<379::aid-lsm3>3.0.co;2-b.

引用本文的文献

1
Investigating the potential of catheter-assisted pulsed focused ultrasound ablation for atherosclerotic plaques.
Med Phys. 2024 Aug;51(8):5181-5189. doi: 10.1002/mp.17253. Epub 2024 Jun 14.
3
Sonothrombolysis: State-of-the-Art and Potential Applications in Children.
Children (Basel). 2023 Dec 31;11(1):57. doi: 10.3390/children11010057.
4
A review on photo-mediated ultrasound therapy.
Exp Biol Med (Maywood). 2023 May;248(9):775-786. doi: 10.1177/15353702231181191. Epub 2023 Jul 15.
5
Angioscopy-Guided Selective Pulmonary Thrombectomy and Angioscopy-Monitored Systemic Thrombosis for a Pulmonary Embolism.
Cureus. 2023 May 1;15(5):e38365. doi: 10.7759/cureus.38365. eCollection 2023 May.
7
Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness.
IEEE Trans Biomed Eng. 2023 Jan;70(1):135-143. doi: 10.1109/TBME.2022.3186586. Epub 2022 Dec 26.
8
The Updated Role of Transcranial Ultrasound Neuromodulation in Ischemic Stroke: From Clinical and Basic Research.
Front Cell Neurosci. 2022 Feb 11;16:839023. doi: 10.3389/fncel.2022.839023. eCollection 2022.
9
The feasibility of ultrasound-assisted endovascular laser thrombolysis in an acute rabbit thrombosis model.
Med Phys. 2021 Aug;48(8):4128-4138. doi: 10.1002/mp.15068. Epub 2021 Jul 20.

本文引用的文献

1
In Vivo Toxicity Study of Engineered Lipid Microbubbles in Rodents.
ACS Omega. 2019 Mar 19;4(3):5526-5533. doi: 10.1021/acsomega.8b03161. eCollection 2019 Mar 31.
3
An Introduction to Contrast-Enhanced Ultrasound for Nephrologists.
Nephron. 2018;138(3):176-185. doi: 10.1159/000484635. Epub 2017 Nov 9.
4
Catheter directed interventions for acute deep vein thrombosis.
Cardiovasc Diagn Ther. 2016 Dec;6(6):599-611. doi: 10.21037/cdt.2016.11.20.
6
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):374-390. doi: 10.1109/TUFFC.2016.2619913. Epub 2016 Oct 20.
7
Deep vein thrombosis and pulmonary embolism.
Lancet. 2016 Dec 17;388(10063):3060-3073. doi: 10.1016/S0140-6736(16)30514-1. Epub 2016 Jun 30.
8
9
The global burden of unsafe medical care: analytic modelling of observational studies.
BMJ Qual Saf. 2013 Oct;22(10):809-15. doi: 10.1136/bmjqs-2012-001748. Epub 2013 Sep 18.
10
Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model.
Ultrasound Med Biol. 2013 May;39(5):813-24. doi: 10.1016/j.ultrasmedbio.2012.12.008. Epub 2013 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验