Na Gyoung S, Jang Seunghun, Lee Yea-Lee, Chang Hyunju
Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
J Phys Chem A. 2020 Dec 17;124(50):10616-10623. doi: 10.1021/acs.jpca.0c07802. Epub 2020 Dec 6.
The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound using a machine learning approach with newly developed tuplewise graph neural networks (TGNN), which is devised to automatically generate input representation of crystal structures in tuple types and to exploit crystal-level properties as one of the input features. Our method brings about a highly accurate prediction of the band gaps at hybrid functionals and GW approximation levels for multiple material data sets without heavy computational cost. Furthermore, to demonstrate the applicability of our prediction model, we provide a data set of GW band gaps for 45835 materials predicted by TGNN posing higher accuracy than standard density functional theory calculations.
开放获取材料数据库使我们能够利用机器学习方法从全新的角度来处理科学问题。在此,基于开放获取数据库,我们聚焦于经典的带隙问题,即使用新开发的元组式图神经网络(TGNN)的机器学习方法来准确预测晶体化合物的带隙,该网络旨在自动生成元组类型的晶体结构输入表示,并将晶体级属性作为输入特征之一加以利用。我们的方法在无需高昂计算成本的情况下,对多个材料数据集在杂化泛函和GW近似水平下的带隙实现了高精度预测。此外,为证明我们预测模型的适用性,我们提供了由TGNN预测的45835种材料的GW带隙数据集,其精度高于标准密度泛函理论计算。