Suppr超能文献

磁化内爆圆柱等离子体中的快速电子输运动力学与能量沉积

Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma.

作者信息

Kawahito D, Bailly-Grandvaux M, Dozières M, McGuffey C, Forestier-Colleoni P, Peebles J, Honrubia J J, Khiar B, Hansen S, Tzeferacos P, Wei M S, Krauland C M, Gourdain P, Davies J R, Matsuo K, Fujioka S, Campbell E M, Santos J J, Batani D, Bhutwala K, Zhang S, Beg F N

机构信息

Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.

Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200052. doi: 10.1098/rsta.2020.0052. Epub 2020 Dec 7.

Abstract

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

摘要

惯性约束聚变方法涉及通过压缩来创造高能量密度状态。高强度激光产生的快电子所带来的有益加热以及高强度磁场的能量约束,可能实现高增益方案。在此,我们报告了一个实验测量结果,该实验将磁化内爆圆柱形等离子体与强激光驱动电子相结合,并进行了多阶段模拟,展示了内爆过程中不同时刻快电子的传输路径,并量化了它们的能量沉积贡献。实验由一个CH泡沫圆柱体组成,置于5 T的外部同轴磁场中,使用36束OMEGA激光束使其内爆。二维流体动力学模型预测CH密度达到[公式:见正文],温度达到920 eV,外部磁场在最大压缩时放大到580 T。在压缩过程中的预定时间,强OMEGA EP激光照射圆柱体的一端,将相对论电子加速到致密的内爆等离子体中,提供额外加热。使用二维粒子模拟(PIC)代码模拟相对论电子束的产生。最后,三维混合PIC模拟计算了靶体内电子的传播和能量沉积,揭示了压缩磁场和自生磁场在传输中所起的作用。在最大压缩时间之前的一个时间窗口内,压缩前沿的自生磁场将注入的电子限制在靶体内,通过焦耳加热提高温度。对于20 T更强的磁场种子,预计电子将被引导进入压缩靶体并提供额外的碰撞加热。本文是“高增益惯性聚变能源的前景(第2部分)”讨论会议文集的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2bf/7741014/5e9373de1c96/rsta20200052-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验