Campbell E M, Sangster T C, Goncharov V N, Zuegel J D, Morse S F B, Sorce C, Collins G W, Wei M S, Betti R, Regan S P, Froula D H, Dorrer C, Harding D R, Gopalaswamy V, Knauer J P, Shah R, Mannion O M, Marozas J A, Radha P B, Rosenberg M J, Collins T J B, Christopherson A R, Solodov A A, Cao D, Palastro J P, Follett R K, Farrell M
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, USA.
General Atomics, 3550 General Atomics Court, San Diego, CA, 92121-1122, USA.
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200011. doi: 10.1098/rsta.2020.0011. Epub 2020 Dec 7.
Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
激光直接驱动(LDD)与激光间接(X射线)驱动(LID)以及脉冲功率磁驱动一起,是在实验室实现聚变点火和增益的三种可行的惯性约束聚变方法之一。LDD计划主要在罗切斯特大学激光能量学实验室的欧米茄激光装置和劳伦斯利弗莫尔国家实验室的国家点火装置(NIF)上执行。欧米茄的LDD研究包括低温内爆、包括材料特性、流体动力学和激光 - 等离子体相互作用物理在内的基础物理学。NIF上的LDD研究集中在点火规模等离子体的能量耦合和激光 - 等离子体相互作用物理方面。在“极向驱动”配置下NIF上进行的有限内爆(其中辐照几何结构是为LID配置的)也是LDD研究的一个特点。利用欧米茄和NIF在大范围的能量、功率和尺度大小上进行研究的能力是LDD研究的一个主要积极方面,它降低了从欧米茄激光器扩展到兆焦耳级激光器的风险。本文将总结LDD研究的现状和未来计划,目标是最终在实验室实现燃烧等离子体。本文是“高增益惯性聚变能源前景(第2部分)”讨论会特刊的一部分。