Suppr超能文献

硅通过降低盐胁迫下玉米(Zea mays L.)品种对钠的吸收来促进生长和离子稳态。

Silicon mediated improvement in the growth and ion homeostasis by decreasing Na uptake in maize (Zea mays L.) cultivars exposed to salinity stress.

机构信息

Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan.

Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.

出版信息

Plant Physiol Biochem. 2021 Jan;158:208-218. doi: 10.1016/j.plaphy.2020.10.040. Epub 2020 Nov 26.

Abstract

Silicon (Si), a major contributing constituent for plant resistance against abiotic stresses. In spite of this, the detailed mechanisms underlying the potential of Si in mitigating salt toxicity in maize (Zea mays L.) are still poorly understood. The present study deals with the response of Si application on growth, gaseous exchange, ion homeostasis and antioxidant enzyme activities in two maize cultivars (P1574 and Hycorn 11) grown under saline conditions. Salt stress remarkably reduced the plant tissue (roots and shoots) biomass, relative water contents (RWC), membrane stability index (MSI), gaseous exchange characteristics, and antioxidant enzymatic activities i.e., superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT). However, salt-induced phytotoxicity increased the plant tissue concentration of malondialdehyde (MDA), hydrogen peroxide (HO), Na/K ionic ratio, Na translocation (root to shoot), and its uptake. The detrimental effects were more prominent in Hycorn 11 cultivar than the P1574 cultivar at higher salinity level (S2; 160 mM NaCl). The addition of Si alleviated salt toxicity, which was more obvious in P1574 relative to Hycorn 11 as demonstrated by an increasing trend in RWC, MSI, and activities of SOD, POD, APX and CAT. Besides, Si-induced mitigation of salt stress was due to the depreciation in Na/K ratio, Na ion uptake at the surface of maize roots, translocation in plant tissues and thereby significantly reduced Na ion accumulation. The findings showed a new dimension regarding the beneficial role of Si in maize plants grown under salt toxicity.

摘要

硅(Si)是植物抵抗非生物胁迫的主要组成部分。尽管如此,硅在减轻玉米(Zea mays L.)盐胁迫毒性方面的潜在作用的详细机制仍知之甚少。本研究探讨了在盐胁迫条件下,施硅对两个玉米品种(P1574 和 Hycorn 11)生长、气体交换、离子稳态和抗氧化酶活性的影响。盐胁迫显著降低了植物组织(根和茎)生物量、相对含水量(RWC)、膜稳定性指数(MSI)、气体交换特性和抗氧化酶活性,如超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和过氧化氢酶(CAT)。然而,盐诱导的植物毒性增加了植物组织中丙二醛(MDA)、过氧化氢(HO)、Na/K 离子比、Na 转运(从根到茎)及其吸收的浓度。在较高盐度水平(S2;160 mM NaCl)下,Hycorn 11 品种的损伤比 P1574 品种更为明显。添加硅缓解了盐胁迫,这在 P1574 品种中比在 Hycorn 11 品种中更为明显,表现为 RWC、MSI 和 SOD、POD、APX 和 CAT 活性增加。此外,硅诱导的减轻盐胁迫是由于 Na/K 比值降低、玉米根表面的 Na 离子吸收、在植物组织中的转运以及 Na 离子积累的显著减少所致。研究结果表明了硅在盐胁迫下玉米植株中的有益作用的新维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验