Suppr超能文献

多创伤筛查队列中脓毒症风险早期预测的多基因风险评分

Polygenic Risk Score for Early Prediction of Sepsis Risk in the Polytrauma Screening Cohort.

作者信息

Lu Hongxiang, Wen Dalin, Sun Jianhui, Du Juan, Qiao Liang, Zhang Huacai, Zeng Ling, Zhang Lianyang, Jiang Jianxin, Zhang Anqiang

机构信息

State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China.

Department of Traumatic Orthopaedics, General Hospital of Xinjiang Militarary Region, Urumuqi, China.

出版信息

Front Genet. 2020 Nov 12;11:545564. doi: 10.3389/fgene.2020.545564. eCollection 2020.

Abstract

BACKGROUND

Increasing genetic variants associated with sepsis have been identified by candidate-gene and genome-wide association studies, but single variants conferred minimal alterations in risk prediction. Our aim is to evaluate whether a weighted genetic risk score (wGRS) that aggregates information from multiple variants could improve risk discrimination of traumatic sepsis.

METHODS

Sixty-four genetic variants potential relating to sepsis were genotyped in Chinese trauma cohort. Genetic variants with mean decrease accuracy (MDA) > 1.0 by random forest algorithms were selected to construct the multilocus wGRS. The area under the curve (AUC) and net reclassification improvement (NRI) were adopted to evaluate the discriminatory and reclassification ability of weighted genetic risk score (wGRS).

RESULTS

Seventeen variants were extracted to construct the wGRS in 883 trauma patients. The wGRS was significantly associated with sepsis after trauma ( = 2.19, 95% CI = 1.53-3.15, = 2.01 × 10) after being adjusted by age, sex, and ISS. Patients with higher wGRS have an increasing incidence of traumatic sepsis ( = 6.81 × 10), higher SOFA ( = 5.00 × 10), and APACHE II score ( = 1.00 × 10). The AUC of the risk prediction model incorporating wGRS into the clinical variables was 0.768 (95% CI = 0.739-0.796), with an increase of 3.40% ( = 8.00 × 10) vs. clinical factor-only model. Furthermore, the NRI increased 25.18% (95% CI = 17.84-32.51%) ( = 6.00 × 10).

CONCLUSION

Our finding indicated that genetic variants could enhance the predictive power of the risk model for sepsis and highlighted the application among trauma patients, suggesting that the sepsis risk assessment model will be a promising screening and prediction tool for the high-risk population.

摘要

背景

通过候选基因和全基因组关联研究已鉴定出越来越多与脓毒症相关的基因变异,但单个变异对风险预测的改变极小。我们的目的是评估整合多个变异信息的加权遗传风险评分(wGRS)是否能改善创伤性脓毒症的风险辨别能力。

方法

在中国创伤队列中对64个可能与脓毒症相关的基因变异进行基因分型。通过随机森林算法选择平均准确性降低(MDA)>1.0的基因变异来构建多位点wGRS。采用曲线下面积(AUC)和净重新分类改善(NRI)来评估加权遗传风险评分(wGRS)的辨别和重新分类能力。

结果

在883例创伤患者中提取了17个变异来构建wGRS。在根据年龄、性别和损伤严重度评分(ISS)进行调整后,wGRS与创伤后脓毒症显著相关(=2.19,95%置信区间=1.53 - 3.15,=2.01×10)。wGRS较高的患者创伤性脓毒症发病率增加(=6.81×10),序贯器官衰竭评估(SOFA)评分较高(=5.00×10),急性生理与慢性健康状况评分系统II(APACHE II)评分较高(=1.00×10)。将wGRS纳入临床变量的风险预测模型的AUC为0.768(95%置信区间=0.739 - 0.796),与仅基于临床因素的模型相比增加了3.40%(=8.00×10)。此外,NRI增加了25.18%(95%置信区间=17.84 - 32.51%)(=6.00×10)。

结论

我们的研究结果表明基因变异可增强脓毒症风险模型的预测能力,并突出了其在创伤患者中的应用,提示脓毒症风险评估模型将成为高危人群有前景的筛查和预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b5a/7689156/d6e06c7931a4/fgene-11-545564-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验