Suppr超能文献

基于LMS自适应滤波器的胎儿心电图提取在FPGA上的高效实现。

Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA.

作者信息

Vasudeva Bhavya, Deora Puneesh, Pradhan Pradhan Mohan, Dasgupta Sudeb

机构信息

Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.

出版信息

Healthc Technol Lett. 2020 Nov 13;7(5):125-131. doi: 10.1049/htl.2020.0016. eCollection 2020 Oct.

Abstract

In this Letter, the field programmable gate array (FPGA) implementation of a foetal heart rate (FHR) monitoring system is presented. The system comprises a preprocessing unit to remove various types of noise, followed by a foetal electrocardiogram (FECG) extraction unit and an FHR detection unit. To improve the precision and accuracy of the arithmetic operations, a floating-point unit is developed. A least mean squares algorithm-based adaptive filter (LMS-AF) is used for FECG extraction. Two different architectures, namely series and parallel, are proposed for the LMS-AF, with the series architecture targeting lower utilisation of hardware resources, and the parallel architecture enabling less convergence time and lower power consumption. The results show that it effectively detects the R peaks in the extracted FECG with a sensitivity of 95.74-100% and a specificity of 100%. The parallel architecture shows up to an 85.88% reduction in the convergence time for non-invasive FECG databases while the series architecture shows a 27.41% reduction in the number of flip flops used when compared with the existing FPGA implementations of various FECG extraction methods. It also shows an increase of 2-7.51% in accuracy when compared to previous works.

摘要

在这封信中,介绍了一种胎儿心率(FHR)监测系统的现场可编程门阵列(FPGA)实现。该系统包括一个用于去除各种类型噪声的预处理单元,随后是一个胎儿心电图(FECG)提取单元和一个FHR检测单元。为了提高算术运算的精度和准确性,开发了一个浮点单元。基于最小均方算法的自适应滤波器(LMS-AF)用于FECG提取。针对LMS-AF提出了两种不同的架构,即串行和并行架构,串行架构旨在降低硬件资源利用率,并行架构能够减少收敛时间并降低功耗。结果表明,它能有效检测提取的FECG中的R波峰,灵敏度为95.74 - 100%,特异性为100%。与各种FECG提取方法的现有FPGA实现相比,并行架构在无创FECG数据库中的收敛时间最多减少85.88%,而串行架构在使用的触发器数量上减少27.41%。与之前的工作相比,其准确性也提高了2 - 7.51%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3295/7704145/dba77beb4052/HTL.2020.0016.01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验