State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
University of Science and Technology of China, Hefei, 230026, P. R. China.
Adv Mater. 2021 Jan;33(3):e2006363. doi: 10.1002/adma.202006363. Epub 2020 Dec 6.
Biocatalytic nanomaterials have been verified to modulate the immunosuppressive state of an extensive range of solid tumors and directly induce antitumor immune response, which effectively combats the holdbacks in cancer immunotherapy. Herein, biomimetic cascade enzyme-initiated toxic-radical-generating devices (GHZD NCs) are fabricated by enveloping glucose oxidase (GOx), artificial nanozyme hemin, and sesquiterpene lactone endoperoxide derived dihydroartemisinin (DHA) into zeolitic imidazolate framework (ZIF-8) for enhanced biocatalytic immunotherapy. The GHZD NCs exhibit amplified multienzyme-mimic (glucose oxidase, peroxidase, and glutathione peroxidase) cascade reactions in artificial nanoscale proximity. Concurrently, a glutathione (GSH)-stimulated labile iron-current amplifier boosts C-centered free radicals, which endows the GHZD NCs with tumor-specific and self-circulating generation ability of vicious C-centered free radicals. Irreversible free radicals (·C and ·OH) and sustainable H O from sequential catalytic processes logically and selectively elevate the oxidative stress in the tumor, which further triggers an efficient immunogenic cell death (ICD) progress. In addition, the in situ nanozyme-based immunotherapy employed for tumor suppression successfully elicits the long-lasting immunological memory effect, which hinders the growth of distant tumors and lung metastasis.
生物催化纳米材料已被证实可调节广泛的实体瘤的免疫抑制状态,并直接诱导抗肿瘤免疫反应,从而有效克服癌症免疫治疗的障碍。在此,通过将葡萄糖氧化酶(GOx)、人工纳米酶血红素和倍半萜内酯内过氧化物青蒿素(DHA)包裹在沸石咪唑酯骨架(ZIF-8)中,制备了仿生级联酶引发的毒性自由基生成装置(GHZD NCs),用于增强生物催化免疫治疗。GHZD NCs 在人工纳米级近程中表现出放大的多酶模拟(葡萄糖氧化酶、过氧化物酶和谷胱甘肽过氧化物酶)级联反应。同时,谷胱甘肽(GSH)刺激的不稳定铁电流放大器增强了 C 中心自由基,使 GHZD NCs 具有肿瘤特异性和自循环产生恶性 C 中心自由基的能力。连续催化过程中的不可逆自由基(·C 和·OH)和可持续的 H O 逻辑且选择性地增加肿瘤中的氧化应激,从而进一步引发有效的免疫原性细胞死亡(ICD)进程。此外,用于肿瘤抑制的原位纳米酶免疫疗法成功引发了持久的免疫记忆效应,从而阻止了远处肿瘤和肺转移的生长。