Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56290-56299. doi: 10.1021/acsami.0c16351. Epub 2020 Dec 6.
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool for ultrasensitive fingerprint recognition of molecules with considerable potential in wearable biochemical sensing. However, previous efforts to fabricate wearable SERS devices by directly treating fabrics with plasmonic nanoparticles have generated a nonuniform assembly of nanoparticles, weakly adsorbed on fabrics via van der Waals forces. Here, we report the creation of washing reusable SERS membranes and textiles via template-assisted self-assembly and micro/nanoimprinting approaches. Uniquely, we employ the capillary force driven self-assembly process to generate micropatch arrays of Au nanoparticle (NP) aggregates within hydrophobic microstructured templates, which are then robustly bonded onto semipermeable transparent membranes and stretchable textiles using the UV-resist based micro/nanoimprinting technique. A mild reactive ion etching (RIE) treatment of SERS membranes and textiles can physically expose the SERS hotspots of Au NP-aggregates embedded within the polymer UV resist for further improvement of their SERS performance. Also, we demonstrate that the semipermeable transparent SERS membranes can keep the moisture content of meat from evaporating to enable stable in situ SERS monitoring of biochemical environments at the fresh meat surface. By contrast, stretchable SERS textiles can allow the spreading, soaking, and evaporation of solution analyte samples on the fabric matrix for continuous enrichment of analyte molecules at the hotspots in biochemical SERS detection. Due to the mechanical robustness of the UV-resist immobilized Au NP aggregates, simple detergent-water washing with ultrasound sonication or mechanical stirring can noninvasively clean contaminated hot spots to reuse SERS textiles. Therefore, we envision that washing reusable SERS membranes and textiles by template-assisted self-assembly and micro/nanoimprinting fabrication are promising for wearable biochemical sensing applications, such as wound monitoring and body fluid monitoring.
表面增强拉曼光谱(SERS)已成为一种用于超灵敏分子指纹识别的强大工具,在可穿戴生化传感方面具有很大的潜力。然而,之前通过将等离子体纳米粒子直接处理织物来制造可穿戴 SERS 器件的努力导致了纳米粒子的不均匀组装,这些纳米粒子通过范德华力弱吸附在织物上。在这里,我们报告了通过模板辅助自组装和微纳压印方法制造可重复使用的洗涤 SERS 膜和纺织品。独特的是,我们采用毛细作用力驱动的自组装过程,在疏水性微结构模板内生成金纳米粒子(NP)聚集体的微补丁阵列,然后使用基于 UV 抗蚀剂的微纳压印技术将其牢固地键合到半透膜和可拉伸纺织品上。对 SERS 膜和纺织品进行温和的反应离子刻蚀(RIE)处理可以物理地暴露嵌入聚合物 UV 抗蚀剂中的 Au NP 聚集体的 SERS 热点,从而进一步提高它们的 SERS 性能。此外,我们还证明了半透膜可以保持肉的水分不蒸发,从而能够在鲜肉表面的生化环境中进行稳定的原位 SERS 监测。相比之下,可拉伸的 SERS 纺织品可以使溶液分析物样品在织物基质上扩散、渗透和蒸发,以在生化 SERS 检测中对分析物分子进行连续富集。由于 UV 抗蚀剂固定的 Au NP 聚集体的机械强度,通过简单的用去污剂-水超声或机械搅拌进行超声清洗,可以无创地清洁污染的热点,从而可重复使用 SERS 纺织品。因此,我们设想通过模板辅助自组装和微纳压印制造可重复使用的 SERS 膜和纺织品有望用于可穿戴生化传感应用,例如伤口监测和体液监测。