Suppr超能文献

操控空心碳基纳米球的颗粒化学:合成策略、机理见解和电化学应用。

Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications.

机构信息

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China.

College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.

出版信息

Acc Chem Res. 2021 Jan 5;54(1):221-231. doi: 10.1021/acs.accounts.0c00613. Epub 2020 Dec 7.

Abstract

Hollow carbonbased nanospheres (HCNs) have been demonstrated to show promising potential in a large variety of research fields, particularly electrochemical devices for energy conversion/storage. The current synthetic protocols for HCNs largely rely on template-based routes (TBRs), which are conceptually straightforward in creating hollow structures but challenged by the time-consuming operations with a low yield in product as well as serious environmental concerns caused by hazardous etching agents. Meanwhile, they showed inadequate ability to build complex carbon-related architectures. Innovative strategies for HCNs free from extra templates thus are highly desirable and are expected to not only ensure precise control of the key structural parameters of hollow architectures with designated functionalities, but also be environmentally benign and scalable approaches suited for their practical applications.In this Account, we outline our recent research progress on the development of template-free protocols for the creation of HCNs with a focus on the acquired mechanical insight into the hollowing mechanism when no extra templates were involved. We demonstrated that carbon-based particles themselves could act as versatile platforms to create hollow architectures through an effective modulation of their inner chemistry. By means of reaction control, the precursor particles were synthesized into solid ones with a well-designed inhomogeneity inside in the form of different chemical parameters such as molecular weight, crystallization degree, and chemical reactivity, by which we not only can create hollow structures inside particles but also have the ability to tune the key features including compositions, porosity, and dimensional architectures. Accordingly, the functionalities of the prepared HCNs could be systematically altered or optimized for their applications. Importantly, the discussed synthesis approaches are facile and environmentally benign processes with potential for scale-up production.The nanoengineering of HNCs is found to be of special importance for their application in a large variety of electrochemical energy storage and conversion systems where the charge transfer and structural stability become a serious concern. Particular attention in this Account is therefore directed to the potential of HCNs in battery systems such as sodium ion batteries (NIBs) and potassium ion batteries (KIBs), whose electrochemical performances are plagued by the destructive volumetric deformation and sluggish charge diffusion during the intercalation/deintercalation of large-size Na or K. We demonstrated that precise control of the multidimensional factors of the HCNs is critical to offer an optimized design of sufficient reactive sites, excellent charge and mass transport kinetics, and resilient electrode structure and also provide a model system suitable for the study of complicated metal-ion storage mechanisms, such as Na storage in a hard carbon anode. We expect that this Account will spark new endeavors in the development of HCNs for various applications including energy conversion and storage, catalysis, biomedicine, and adsorption.

摘要

中空碳基纳米球(HCNs)在电化学能量转换/存储等诸多研究领域表现出了巨大的潜力。目前,HCNs 的合成方法主要依赖于模板法(TBRs),该方法在构建中空结构方面具有概念上的优势,但在操作过程中耗时较长,产物收率低,而且使用的刻蚀剂具有严重的环境危害。同时,这种方法对于构建复杂的碳相关结构的能力不足。因此,开发无需额外模板的 HCNs 的创新性策略是非常有必要的,不仅可以确保对具有指定功能的中空结构的关键结构参数进行精确控制,而且还可以采用环保且可扩展的方法,以满足其实际应用的需要。

在本综述中,我们概述了我们在开发无模板制备 HCNs 方面的最新研究进展,重点介绍了在没有额外模板的情况下,我们对中空化机制的机械理解的获取。我们证明了碳基颗粒本身可以通过有效调节其内部化学性质,作为一种通用的平台来构建中空结构。通过反应控制,我们可以将前驱体颗粒合成成为具有不同化学参数(如分子量、结晶度和化学反应性)的内部不均匀的实心颗粒,从而不仅可以在颗粒内部形成中空结构,而且还可以调节关键特征,包括组成、孔隙率和维度结构。因此,可以系统地改变或优化制备的 HCNs 的功能,以满足其应用需求。重要的是,所讨论的合成方法是简单且环保的工艺,具有扩大生产的潜力。

我们发现,HNCs 的纳米工程对于其在各种电化学能量存储和转换系统中的应用具有特殊意义,因为在这些系统中,电荷转移和结构稳定性是一个严重的问题。因此,本综述特别关注 HCNs 在电池系统中的潜力,例如钠离子电池(NIBs)和钾离子电池(KIBs),这些电池系统的电化学性能受到 Na 或 K 嵌入/脱嵌过程中破坏性的体积变形和缓慢的电荷扩散的困扰。我们证明了对 HCNs 的多维因素的精确控制对于提供足够的反应活性位点、优异的电荷和质量传输动力学以及弹性电极结构的优化设计至关重要,同时也为研究复杂的金属离子存储机制提供了一个合适的模型系统,例如在硬碳阳极中的钠离子存储。我们期望本综述能够激发在 HCNs 的开发方面的新努力,以满足包括能量转换和存储、催化、生物医药和吸附等在内的各种应用的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验