Suppr超能文献

基于时依倾向评分匹配的临床试验模拟:以评估肾移植影响为例。

Clinical Trial Emulation by Matching Time-dependent Propensity Scores: The Example of Estimating Impact of Kidney Transplantation.

机构信息

From the INSERM UMR 1246 -SPHERE, Nantes University, Tours University, Nantes, France.

Nephrology Department, Lille University Hospital, Lille, France.

出版信息

Epidemiology. 2021 Mar 1;32(2):220-229. doi: 10.1097/EDE.0000000000001308.

Abstract

BACKGROUND

No study to our knowledge has examined the use of observational data to emulate a clinical trial whereby patients at the time of kidney transplant proposal are randomly assigned to an awaiting transplantation or transplantation group. The main methodologic issue is definition of the baseline for dialyzed patients assigned to awaiting transplantation, resulting in the inability to use common propensity score-based approaches. We aimed to use time-dependent propensity score to better appraise the benefit of transplantation.

METHODS

We studied 23,231 patients included in the French registry and on a transplant waiting list from 2005 to 2016. The main outcome was time to death. By matching on time-dependent propensity score, we obtained 10,646 pairs of recipients (transplantation group) versus comparable patients remaining on dialysis (awaiting transplantation group).

RESULTS

The baseline exposure, that is, pseudo-randomization, was matching time. Median follow-up time was 3.5 years. At 10 years' follow-up, the restricted mean survival time was 8.8 years [95% confidence interval (CI) = 8.7, 8.9] in the transplantation group versus 8.2 years (95% CI = 8.1, 8.3) in the awaiting transplantation group. The corresponding life expectancy gain was 6.8 months (95% CI = 5.5, 8.2), and this corresponded to one prevented death at 10 years for 13 transplantations.

CONCLUSIONS

Our study has estimated the life expectancy gain due to kidney transplantation. It confirms transplantation as the best treatment for end-stage renal disease. Furthermore, we demonstrated that this simple method should also be considered for estimating marginal effects of time-dependent exposures.

摘要

背景

据我们所知,尚无研究利用观察性数据来模拟临床试验,即在进行肾移植建议时,将患者随机分配到等待移植或移植组。主要的方法学问题是定义等待移植的透析患者的基线,导致无法使用常见的倾向评分方法。我们旨在使用时间依赖性倾向评分来更好地评估移植的益处。

方法

我们研究了 2005 年至 2016 年期间纳入法国注册中心和移植等待名单的 23231 名患者。主要结局是死亡时间。通过基于时间依赖性倾向评分进行匹配,我们获得了 10646 对接受者(移植组)与留在透析中的可比患者(等待移植组)。

结果

基线暴露,即伪随机化,是匹配时间。中位随访时间为 3.5 年。在 10 年的随访中,移植组的限制性平均生存时间为 8.8 年[95%置信区间(CI)=8.7,8.9],而等待移植组为 8.2 年(95%CI=8.1,8.3)。相应的预期寿命增益为 6.8 个月(95%CI=5.5,8.2),这相当于 10 年内移植 13 例可预防的死亡。

结论

我们的研究估计了肾移植带来的预期寿命增益。它证实了移植是治疗终末期肾病的最佳方法。此外,我们还证明了这种简单的方法也应该用于估计时间依赖性暴露的边际效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验