Suppr超能文献

在医学研究中实施试验模拟方法:范围综述。

Implementation of the trial emulation approach in medical research: a scoping review.

机构信息

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Health Data Research UK London, Institute of Health Informatics, University College London, London, UK.

出版信息

BMC Med Res Methodol. 2023 Aug 16;23(1):186. doi: 10.1186/s12874-023-02000-9.

Abstract

BACKGROUND

When conducting randomised controlled trials is impractical, an alternative is to carry out an observational study. However, making valid causal inferences from observational data is challenging because of the risk of several statistical biases. In 2016 Hernán and Robins put forward the 'target trial framework' as a guide to best design and analyse observational studies whilst preventing the most common biases. This framework consists of (1) clearly defining a causal question about an intervention, (2) specifying the protocol of the hypothetical trial, and (3) explaining how the observational data will be used to emulate it.

METHODS

The aim of this scoping review was to identify and review all explicit attempts of trial emulation studies across all medical fields. Embase, Medline and Web of Science were searched for trial emulation studies published in English from database inception to February 25, 2021. The following information was extracted from studies that were deemed eligible for review: the subject area, the type of observational data that they leveraged, and the statistical methods they used to address the following biases: (A) confounding bias, (B) immortal time bias, and (C) selection bias.

RESULTS

The search resulted in 617 studies, 38 of which we deemed eligible for review. Of those 38 studies, most focused on cardiology, infectious diseases or oncology and the majority used electronic health records/electronic medical records data and cohort studies data. Different statistical methods were used to address confounding at baseline and selection bias, predominantly conditioning on the confounders (N = 18/49, 37%) and inverse probability of censoring weighting (N = 7/20, 35%) respectively. Different approaches were used to address immortal time bias, assigning individuals to treatment strategies at start of follow-up based on their data available at that specific time (N = 21, 55%), using the sequential trial emulations approach (N = 11, 29%) or the cloning approach (N = 6, 16%).

CONCLUSION

Different methods can be leveraged to address (A) confounding bias, (B) immortal time bias, and (C) selection bias. When working with observational data, and if possible, the 'target trial' framework should be used as it provides a structured conceptual approach to observational research.

摘要

背景

当进行随机对照试验不切实际时,可以选择进行观察性研究。然而,由于存在多种统计偏倚的风险,从观察性数据中得出有效的因果推论具有挑战性。2016 年,Hernán 和 Robins 提出了“目标试验框架”,作为指导如何最好地设计和分析观察性研究并防止最常见偏倚的指南。该框架包括(1)明确定义关于干预的因果问题,(2)规定假设试验的方案,以及(3)解释如何使用观察性数据来模拟它。

方法

本范围综述的目的是确定并审查所有医学领域中明确尝试进行试验模拟研究的情况。从数据库建立到 2021 年 2 月 25 日,在 Embase、Medline 和 Web of Science 上搜索以英文发表的试验模拟研究。从被认为符合审查条件的研究中提取了以下信息:主题领域、他们利用的观察性数据类型,以及他们用于解决以下偏倚的统计方法:(A)混杂偏倚、(B)起始时间偏倚和(C)选择偏倚。

结果

搜索结果产生了 617 项研究,其中 38 项我们认为符合审查条件。在这 38 项研究中,大多数研究集中在心脏病学、传染病学或肿瘤学领域,并且大多数研究使用电子健康记录/电子病历数据和队列研究数据。不同的统计方法用于解决基线混杂和选择偏倚,主要是通过对混杂因素进行条件处理(N=18/49,37%)和逆概率 censoring 加权(N=7/20,35%)。不同的方法用于解决起始时间偏倚,根据随访开始时他们可用的特定时间的数据,将个体分配到治疗策略(N=21,55%),使用顺序试验模拟方法(N=11,29%)或克隆方法(N=6,16%)。

结论

可以利用不同的方法来解决(A)混杂偏倚、(B)起始时间偏倚和(C)选择偏倚。在使用观察性数据时,如果可能,应使用“目标试验”框架,因为它为观察性研究提供了一种结构化的概念方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85e2/10428565/b5a6f8ffcda8/12874_2023_2000_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验