Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES, CNRS, Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, France.
Institut Charles Sadron (UPR 22), CNRS, Université de Strasbourg, 23 rue de Loess, Strasbourg CEDEX 2 67034, France.
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55766-55781. doi: 10.1021/acsami.0c13545. Epub 2020 Dec 7.
Virtually transparent photocatalytic multilayer films composed of TiO nanoparticles and polyelectrolytes were built on model surfaces using layer-by-layer assembly and investigated as photocatalytic nanoporous coatings. Formic acid (HCOOH) and were used as models for the degradation of gaseous pollutants and for studying antibacterial properties. Positively charged TiO nanoparticles were coassembled with negatively charged poly(sodium 4-styrenesulfonate) (NaPSS) which leads to highly transparent nanoscale coatings in which the content of TiO particles is controlled mainly by the number of deposition cycles and the enhanced translucency with respect to titania powders is likely due to the presence of the polyelectrolytes in the interstitial space between the particles. Build-up and structural properties of the films were determined by ellipsometry, quartz crystal microbalance (QCM-D, with dissipation monitoring), and UV-vis spectrophotometry in transmission and scanning electron microscopy. Complementary photophysical and activity tests of (PSS/TiO) multilayer films were performed in the gas-phase under UV-A light and revealed a peculiar dependence on the number of layer pairs (LPs), corresponding to a clear deviation from the usual observations in photocatalysis with increasing TiO amounts. Most notably, a single LP film showed a strongly enhanced HCOOH mineralization and outperformed films with a higher number of LPs, with respect to the quantity of TiO catalyst present in the films. It is believed that the high quantum yield (8.1%) of a coating consisting of a single TiO layer which is 6-7 times higher than that of a 6-10 LP film could be due to the optimum accessibility of the TiO crystallites toward both HCOOH and water molecules. In thicker films, while no detrimental light screening was observed with increasing the number of LPs, diffusion phenomena could cap the efficiency of the access of the pollutant and water to the catalytic surface. Unlike for HCOOH mineralization, three PSS/TiO LPs were required for observing a maximum antibacterial activity of the nanocomposite coatings. This is likely due to the fact that micrometer-sized bacteria do not enter into the interstitial space between the TiO particles and require a different surface morphology with respect to the number of active contact points for optimum degradation.
使用层层自组装技术,在模型表面构建了由 TiO 纳米粒子和聚电解质组成的几乎透明的光催化多层膜,并将其作为光催化纳米多孔涂层进行研究。甲酸 (HCOOH) 和 被用作气态污染物降解和抗菌性能研究的模型。带正电荷的 TiO 纳米粒子与带负电荷的聚(4-苯乙烯磺酸钠)(NaPSS)共组装,这导致高度透明的纳米级涂层,其中 TiO 颗粒的含量主要由沉积循环数控制,与 TiO 粉末相比,透光率的提高可能是由于颗粒间的间隙中存在聚电解质。通过椭圆光度法、石英晶体微天平(QCM-D,具有耗散监测)和透射和扫描电子显微镜中的紫外可见分光光度法确定了薄膜的堆积和结构特性。在 UV-A 光下的气相中对 (PSS/TiO) 多层膜进行了补充光物理和活性测试,结果表明其对数对层对(LP)的数量存在特殊依赖性,这与在 TiO 量增加时的光催化中通常观察到的情况明显偏离。值得注意的是,单层膜显示出强烈增强的 HCOOH 矿化作用,并且优于具有更高 LP 数量的膜,这与薄膜中存在的 TiO 催化剂的数量有关。据信,由单层 TiO 层组成的涂层的高量子产率(8.1%)比 6-10 LP 膜高 6-7 倍,这可能是由于 TiO 微晶对 HCOOH 和水分子的最佳可及性所致。在较厚的薄膜中,虽然随着 LP 数量的增加没有观察到有害的光屏蔽,但扩散现象可能会限制污染物和水到达催化表面的效率。与 HCOOH 矿化不同,需要三个 PSS/TiO LP 才能观察到纳米复合材料涂层的最大抗菌活性。这可能是由于微米大小的 细菌不会进入 TiO 颗粒之间的间隙,并且需要相对于最佳降解的活性接触点数量具有不同的表面形态。