Guerrero Isabel, Saha Arpita, Xavier Jewel Ann Maria, Viñas Clara, Romero Isabel, Teixidor Francesc
Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.
Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain.
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56372-56384. doi: 10.1021/acsami.0c17847. Epub 2020 Dec 7.
A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3'-Co(1,2-CBH)] (H[]), termed MSNPs-NH@H[], are highly stable and do not produce any leakage of the photoredox catalyst H[] in water. The magnetite MNPs were coated with SiO to provide colloidal stability and silanol groups to be tethered to amine-containing units. These were the MSNPs-NH on which was anchored, in water, the cobaltabis(dicarbollide) complex H[] to obtain MSNPs-NH@H[]. Both MSNPs-NH and MSNPs-NH@H[] were evaluated to study the morphology, characterization, and colloidal stability of the MNPs produced. The heterogeneous MSNP-NH@H[] system was studied for the photooxidation of alcohols, such as 1-phenylethanol, 1-hexanol, 1,6-hexanediol, or cyclohexanol among others, using catalyst loads of 0.1 and 0.01 mol %. Surfactants were introduced to prevent the aggregation of MNPs, and cetyl trimethyl ammonium chloride was chosen as a surfactant. This provided adequate stability, without hampering quick magnetic separation. The results proved that the catalysis could be speeded up if aggregation was prevented. The recyclability of the catalytic system was demonstrated by performing 12 runs of the MSNPs-NH@H[] system, each one without loss of selectivity and yield. The cobaltabis(dicarbollide) catalyst supported on silica-coated magnetite nanoparticles has proven to be a robust, efficient, and easily reusable system for the photooxidation of alcohols in water, resulting in a green and sustainable heterogeneous catalytic system.
一种成功的均相光氧化还原催化剂已有效地负载于包覆有二氧化硅层的磁性纳米颗粒(MNP)上,在保持其均相催化性能不变的同时,由于易于磁分离和可循环利用而具备了其他特性。胺基封端的磁性二氧化硅纳米颗粒与H[3,3'-Co(1,2-CBH)](H[])通过非共价键连接,称为MSNPs-NH@H[],其稳定性高,且光氧化还原催化剂H[]在水中不会发生任何泄漏。磁铁矿MNP包覆SiO以提供胶体稳定性,并提供可与含胺单元连接的硅醇基团。这些就是MSNPs-NH,在水中将钴双(二碳硼烷)配合物H[]锚定在其上,从而得到MSNPs-NH@H[]。对MSNPs-NH和MSNPs-NH@H[]均进行了评估,以研究所制备MNP的形态、表征和胶体稳定性。对非均相MSNP-NH@H[]体系进行了研究,用于醇类(如1-苯乙醇、1-己醇、1,6-己二醇或环己醇等)的光氧化反应,催化剂负载量为0.1和0.01 mol%。引入表面活性剂以防止MNP聚集,选择十六烷基三甲基氯化铵作为表面活性剂。这提供了足够的稳定性,且不妨碍快速磁分离。结果证明,如果防止聚集,催化反应可以加速。通过对MSNPs-NH@H[]体系进行12次循环实验,证明了催化体系的可循环利用性,每次循环实验的选择性和产率均无损失。负载于二氧化硅包覆的磁铁矿纳米颗粒上的钴双(二碳硼烷)催化剂已被证明是一种用于水中醇类光氧化反应的强大、高效且易于重复使用的体系,从而形成了一种绿色且可持续的非均相催化体系。