Suppr超能文献

静电嵌入 QM/MM 的解析能量、梯度和 Hessian 基于静电势拟合的原子电荷与 MM 子系统大小呈线性比例缩放。

Analytic Energy, Gradient, and Hessian of Electrostatic Embedding QM/MM Based on Electrostatic Potential-Fitted Atomic Charges Scaling Linearly with the MM Subsystem Size.

机构信息

Aix-Marseille Univ, CNRS, ICR, Marseille, France.

出版信息

J Chem Theory Comput. 2021 Jan 12;17(1):538-548. doi: 10.1021/acs.jctc.0c01075. Epub 2020 Dec 7.

Abstract

The electrostatic potential fitting method (ESPF) is a powerful way of defining atomic charges derived from quantum density matrices fitted to reproduce a quantum mechanical charge distribution in the presence of an external electrostatic potential. These can be used in the Hamiltonian to define a robust and efficient electrostatic embedding QM/MM method. The original formulation of ESPF QM/MM was based on two main approximations, namely, neglecting the grid derivatives and nonconserving of the total QM charge. Here, we present a new ESPF atomic charge operator, which overcomes these drawbacks at virtually no extra computational cost. The new charge operators employ atom-centered grids and conserve the total charge when traced with the density matrix. We present an efficient and easy-to-implement analytic form for the energy, gradient, and hessian that scales linearly with the MM subsystem size. We show that grid derivatives and charge conservation are fundamental to preserve the translational invariance properties of energies and their derivatives and exact conditions to be satisfied by the atomic charge derivatives. As proof of concept, we compute the transition state that leads to the formation of hydrogen peroxide during cryptochrome's reoxidation reaction. Last, we show that the construction of the full QM/MM hessian scales linearly with the MM subsystem size.

摘要

静电势拟合方法(ESPF)是一种强大的方法,可以定义原子电荷,这些电荷源自拟合量子密度矩阵以再现存在外静电势时的量子力学电荷分布。这些电荷可以用于哈密顿量中,以定义稳健有效的静电嵌入 QM/MM 方法。最初的 ESPF QM/MM 公式基于两个主要近似,即忽略网格导数和不守恒总 QM 电荷。在这里,我们提出了一种新的 ESPF 原子电荷算子,它几乎没有增加额外的计算成本就克服了这些缺点。新的电荷算子使用原子中心网格,并在与密度矩阵追踪时守恒总电荷。我们提出了一种高效且易于实现的能量、梯度和 Hessian 解析形式,其规模与 MM 子系统大小呈线性关系。我们表明,网格导数和电荷守恒对于保持能量及其导数的平移不变性性质以及原子电荷导数要满足的精确条件至关重要。作为概念验证,我们计算了导致隐花色素再氧化反应中过氧化氢形成的过渡态。最后,我们表明全 QM/MM Hessian 的构建与 MM 子系统大小呈线性关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验