Schwinn Karno, Ferré Nicolas, Huix-Rotllant Miquel
Aix-Marseille Univ, CNRS, ICR, Marseille, France.
J Chem Phys. 2019 Jul 28;151(4):041102. doi: 10.1063/1.5115125.
In electrostatic embedding mixed quantum and molecular mechanics (QM/MM) approaches, the QM charge distribution is polarized by the electrostatic interaction with the MM environment. Analytic derivatives of expectation values of operators are required to extract properties such as vibrational spectra. These derivatives usually require solving a set of coupled perturbed equations for each nucleus/atom in the system, thus becoming prohibitive when the MM subsystem contains thousands of atoms. In the context of Electrostatic Potential Fitting (ESPF) QM/MM, we can easily overcome this bottleneck by defining a set of auxiliary coupled perturbed equations called the Q-vector equations. The Q-vector method scales only with the size of the QM subsystem, producing an effective charge tensor that leads to the atomic charge derivative after contraction with the MM electrostatic potential gradient. As an example, we use the charge derivatives as an analysis tool to identify the most important chromophore-polarizing amino-acids in plant cryptochrome. This finding opens up the route of defining polarizable force fields and simulating vibrational spectroscopy using ESPF QM/MM electrostatic embedding at an affordable computational cost.
在静电嵌入混合量子与分子力学(QM/MM)方法中,量子力学电荷分布会因与分子力学环境的静电相互作用而极化。为了获取诸如振动光谱等性质,需要算符期望值的解析导数。这些导数通常要求为系统中的每个原子核/原子求解一组耦合微扰方程,因此当分子力学子系统包含数千个原子时,计算量会变得极大。在静电势拟合(ESPF)QM/MM的背景下,我们可以通过定义一组称为Q向量方程的辅助耦合微扰方程轻松克服这一瓶颈。Q向量方法仅随量子力学子系统的大小而扩展,生成一个有效电荷张量,该张量与分子力学静电势梯度收缩后可得到原子电荷导数。例如,我们将电荷导数用作分析工具,以识别植物隐花色素中最重要的发色团极化氨基酸。这一发现开辟了以可承受的计算成本定义可极化力场并使用ESPF QM/MM静电嵌入模拟振动光谱的途径。