IEEE Trans Biomed Eng. 2022 Jan;69(1):4-14. doi: 10.1109/TBME.2020.3042907. Epub 2021 Dec 23.
Positron emission tomography (PET) is widely used for clinical diagnosis. As PET suffers from low resolution and high noise, numerous efforts try to incorporate anatomical priors into PET image reconstruction, especially with the development of hybrid PET/CT and PET/MRI systems. In this work, we proposed a cube-based 3D structural convolutional sparse coding (CSC) concept for penalized-likelihood PET image reconstruction, named 3D PET-CSC. The proposed 3D PET-CSC takes advantage of the convolutional operation and manages to incorporate anatomical priors without the need of registration or supervised training. As 3D PET-CSC codes the whole 3D PET image, instead of patches, it alleviates the staircase artifacts commonly presented in traditional patch-based sparse coding methods. Compared with traditional coding methods in Fourier domain, the proposed method extends the 3D CSC to a straightforward approach based on the pursuit of localized cubes. Moreover, we developed the residual-image and order-subset mechanisms to further reduce the computational cost and accelerate the convergence for the proposed 3D PET-CSC method. Experiments based on computer simulations and clinical datasets demonstrate the superiority of 3D PET-CSC compared with other reference methods.
正电子发射断层扫描(PET)被广泛应用于临床诊断。由于 PET 存在分辨率低和噪声高的问题,因此人们进行了大量的研究,试图将解剖学先验信息纳入 PET 图像重建中,特别是随着 PET/CT 和 PET/MRI 系统的发展。在这项工作中,我们提出了一种基于体素的三维结构卷积稀疏编码(CSC)方法,用于带惩罚似然项的 PET 图像重建,称为 3D PET-CSC。所提出的 3D PET-CSC 利用卷积运算,无需配准或监督训练,即可将解剖学先验信息纳入其中。由于 3D PET-CSC 对整个 3D PET 图像进行编码,而不是对图像块进行编码,因此它可以减轻传统基于图像块的稀疏编码方法中常见的阶梯伪影。与传统的傅里叶域编码方法相比,该方法将 3D CSC 扩展为一种基于局部立方体的直接方法。此外,我们还开发了残差图像和顺序子集机制,以进一步降低计算成本并加速 3D PET-CSC 方法的收敛速度。基于计算机模拟和临床数据集的实验结果表明,3D PET-CSC 优于其他参考方法。