Suppr超能文献

基于相似度的正则化参数优化微调方法在正电子发射断层成像重建中的应用。

Similarity-Driven Fine-Tuning Methods for Regularization Parameter Optimization in PET Image Reconstruction.

机构信息

Department of Electrical and Electronic Engineering, Pai Chai University, Daejeon 35345, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jun 21;23(13):5783. doi: 10.3390/s23135783.

Abstract

We present an adaptive method for fine-tuning hyperparameters in edge-preserving regularization for PET image reconstruction. For edge-preserving regularization, in addition to the smoothing parameter that balances data fidelity and regularization, one or more control parameters are typically incorporated to adjust the sensitivity of edge preservation by modifying the shape of the penalty function. Although there have been efforts to develop automated methods for tuning the hyperparameters in regularized PET reconstruction, the majority of these methods primarily focus on the smoothing parameter. However, it is challenging to obtain high-quality images without appropriately selecting the control parameters that adjust the edge preservation sensitivity. In this work, we propose a method to precisely tune the hyperparameters, which are initially set with a fixed value for the entire image, either manually or using an automated approach. Our core strategy involves adaptively adjusting the control parameter at each pixel, taking into account the degree of patch similarities calculated from the previous iteration within the pixel's neighborhood that is being updated. This approach allows our new method to integrate with a wide range of existing parameter-tuning techniques for edge-preserving regularization. Experimental results demonstrate that our proposed method effectively enhances the overall reconstruction accuracy across multiple image quality metrics, including peak signal-to-noise ratio, structural similarity, visual information fidelity, mean absolute error, root-mean-square error, and mean percentage error.

摘要

我们提出了一种自适应方法,用于微调边缘保持正则化中 PET 图像重建的超参数。对于边缘保持正则化,除了平衡数据保真度和正则化的平滑参数外,通常还会合并一个或多个控制参数,通过修改惩罚函数的形状来调整边缘保持的灵敏度。尽管已经有一些努力开发用于调整正则化 PET 重建中超参数的自动化方法,但这些方法大多数主要关注于平滑参数。然而,如果不能适当选择调整边缘保持灵敏度的控制参数,就很难获得高质量的图像。在这项工作中,我们提出了一种精确调整超参数的方法,这些超参数最初是为整个图像设置固定值,可以手动设置,也可以使用自动化方法设置。我们的核心策略涉及在每个像素处自适应地调整控制参数,考虑到从正在更新的像素邻域内的前一次迭代中计算出的斑块相似度的程度。这种方法允许我们的新方法与各种现有的边缘保持正则化参数调整技术集成。实验结果表明,我们提出的方法有效地提高了多个图像质量指标的整体重建准确性,包括峰值信噪比、结构相似性、视觉信息保真度、平均绝对误差、均方根误差和平均百分比误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf12/10346317/d7fbd2856015/sensors-23-05783-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验