Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150, Espoo, Finland.
RISE Reserach Institute of Sweden, Drottning Kistrinas Väg 61, 114 86, Stockholm, Sweden.
ChemSusChem. 2021 Feb 18;14(4):1016-1036. doi: 10.1002/cssc.202002553. Epub 2021 Jan 5.
Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.
糖基生物精炼厂面临着重大的经济挑战。生物精炼木质素通常被归类为低价值产品(燃料或低成本的化工原料),主要是因为粗原料中的木质素纯度低。然而,最近的研究表明,生物精炼木质素很有可能被成功地用作高价值产品,这反过来又应该导致整个生物精炼理念的经济复兴。这篇批判性评论总结了我们小组的最新进展,以及技术木质素增值的最新技术,重点是生物精炼木质素。木质素和纤维素混合物在不同应用(木材粘合剂、碳纤维和纳米纤维、热塑性塑料)中的有益协同作用已经得到证明。这种现象导致粗生物精炼木质素(其中含有大量残余结晶纤维素)在某些应用中表现优于高纯度木质素。以前,某些应用需要高纯度和/或功能化的木质素,具有较窄的分子量分布,这里建议使用简单的绿色工艺来升级粗生物精炼木质素作为替代方案。这些方法可以很容易地与木质素微/纳米颗粒(LMNP)的生产相结合。与传统的木质素改性相比,这些方法的成本效益也应该更高。与传统的制浆工艺相比,生物精炼工艺允许在优化特定应用所需的木质素特性方面具有更大的灵活性。这种木质素工程,同时需要一种有效的策略,能够处理大量数据集,以找到工艺变量、木质素结构和性质之间的相关性,最终找到它们在不同应用中的性能。