Suppr超能文献

OGA 抑制改变阿尔茨海默病细胞质杂种中的能量代谢和营养感应。

OGA Inhibition Alters Energetics and Nutrient Sensing in Alzheimer's Disease Cytoplasmic Hybrids.

机构信息

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.

Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.

出版信息

J Alzheimers Dis. 2020;78(4):1743-1753. doi: 10.3233/JAD-200996.

Abstract

BACKGROUND

Alzheimer's disease (AD) features reductions in key bioenergetic fluxes and perturbed mitochondrial function. Cytoplasmic hybrids (cybrids) generated through the transfer of AD subject mitochondria to mtDNA-depleted SH-SY5Y neuroblastoma cells recapitulate some of these features in an in vitro setting.

OBJECTIVE

For this study, we used the AD cybrid model to assess the impact of a nutrient-excess like-state via increasing O-GlcNAcylation on whole cell and mitochondrial homeostasis.

METHODS

We induced increased O-GlcNAc by treating AD and control cybrid cell lines with Thiamet G (TMG), an inhibitor of the O-GlcNAcase enzyme that mediates removal of the nutrient-dependent O-GlcNAc modification.

RESULTS

Relative to control cybrid cell lines, AD cybrid lines showed a blunted response to TMG-induced O-GlcNAcylation. At baseline, AD cybrid cell line mitochondria showed partial activation of several proteins that help maintain bioenergetic homeostasis such as AMP-Regulated Kinase suggesting that AD mitochondria initiate a state of nutrient stress promoting energetic compensation; however, this compensation reduces the capacity of cells to respond to additional nutrient-related stresses such as TMG treatment. Also, TMG caused disruptions in acetylation and Sirtuin 3 expression, while lowing total energetic output of the cell.

CONCLUSION

Together, these findings suggest that modulation of O-GlcNAc is essential for proper energetic function of the mitochondria, and AD mitochondrial capacity to handle nutrient-excess is limited.

摘要

背景

阿尔茨海默病(AD)的特征是关键生物能量通量减少和线粒体功能失调。通过将 AD 患者的线粒体转移到 mtDNA 耗尽的 SH-SY5Y 神经母细胞瘤细胞中产生的胞质杂种(cybrids)在体外环境中再现了其中的一些特征。

目的

在这项研究中,我们使用 AD 杂种模型来评估通过增加 O-GlcNAc 对整体细胞和线粒体稳态的影响。

方法

我们通过用 Thiamet G(TMG)处理 AD 和对照杂种细胞系来诱导 O-GlcNAc 的增加,TMG 是一种 O-GlcNAcase 酶的抑制剂,介导去除营养依赖性 O-GlcNAc 修饰。

结果

与对照杂种细胞系相比,AD 杂种系对 TMG 诱导的 O-GlcNAcylation 的反应迟钝。在基线时,AD 杂种系的线粒体显示出几种有助于维持生物能量稳态的蛋白质的部分激活,如 AMP 调节激酶,这表明 AD 线粒体启动了一种营养应激状态,促进能量补偿;然而,这种补偿降低了细胞对额外营养相关应激的反应能力,如 TMG 处理。此外,TMG 导致乙酰化和 Sirtuin 3 表达的破坏,同时降低细胞的总能量输出。

结论

综上所述,这些发现表明,O-GlcNAc 的调节对于线粒体的适当能量功能至关重要,并且 AD 线粒体处理营养过剩的能力是有限的。

相似文献

1
2
O-GlcNAcylation regulates extracellular signal-regulated kinase (ERK) activation in Alzheimer's disease.
Front Aging Neurosci. 2023 Jul 4;15:1155630. doi: 10.3389/fnagi.2023.1155630. eCollection 2023.
3
Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.
J Biol Chem. 2016 Sep 2;291(36):18897-914. doi: 10.1074/jbc.M116.734533. Epub 2016 Jul 11.
4
O-GlcNAc impacts mitophagy via the PINK1-dependent pathway.
Front Aging Neurosci. 2024 Aug 8;16:1387931. doi: 10.3389/fnagi.2024.1387931. eCollection 2024.
5
Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation.
PLoS One. 2012;7(4):e35277. doi: 10.1371/journal.pone.0035277. Epub 2012 Apr 19.
6
Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies.
Biochim Biophys Acta Mol Basis Dis. 2019 Aug 1;1865(8):2048-2059. doi: 10.1016/j.bbadis.2018.10.037. Epub 2018 Nov 6.
7
Evidence of a compensatory regulation of colonic O-GlcNAc transferase and O-GlcNAcase expression in response to disruption of O-GlcNAc homeostasis.
Biochem Biophys Res Commun. 2020 Jan 1;521(1):125-130. doi: 10.1016/j.bbrc.2019.10.090. Epub 2019 Oct 17.
8
O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis.
Front Endocrinol (Lausanne). 2014 Dec 1;5:206. doi: 10.3389/fendo.2014.00206. eCollection 2014.
9
The effects of O-GlcNAc alteration on Alzheimer-like neurodegeneration in SK-N-SH cells.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018 Sep;162(3):243-248. doi: 10.5507/bp.2018.042. Epub 2018 Aug 28.
10
Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines.
Hum Mol Genet. 2013 Oct 1;22(19):3931-46. doi: 10.1093/hmg/ddt247. Epub 2013 Jun 4.

引用本文的文献

2
O-GlcNAc impacts mitophagy via the PINK1-dependent pathway.
Front Aging Neurosci. 2024 Aug 8;16:1387931. doi: 10.3389/fnagi.2024.1387931. eCollection 2024.
3
Roles of O-GlcNAcylation in Mitochondrial Homeostasis and Cardiovascular Diseases.
Antioxidants (Basel). 2024 May 6;13(5):571. doi: 10.3390/antiox13050571.
4

本文引用的文献

1
Glucose, glycolysis, and neurodegenerative diseases.
J Cell Physiol. 2020 Nov;235(11):7653-7662. doi: 10.1002/jcp.29682. Epub 2020 Apr 2.
2
Cross-Dysregulation of -GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases.
Front Endocrinol (Lausanne). 2018 Oct 9;9:602. doi: 10.3389/fendo.2018.00602. eCollection 2018.
3
Real Talk: The Inter-play Between the mTOR, AMPK, and Hexosamine Biosynthetic Pathways in Cell Signaling.
Front Endocrinol (Lausanne). 2018 Sep 6;9:522. doi: 10.3389/fendo.2018.00522. eCollection 2018.
4
Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3.
Front Physiol. 2018 Aug 7;9:1094. doi: 10.3389/fphys.2018.01094. eCollection 2018.
5
Cross regulation between mTOR signaling and O-GlcNAcylation.
J Bioenerg Biomembr. 2018 Jun;50(3):213-222. doi: 10.1007/s10863-018-9747-y. Epub 2018 Mar 9.
7
Sustained GlcNAcylation reprograms mitochondrial function to regulate energy metabolism.
J Biol Chem. 2017 Sep 8;292(36):14940-14962. doi: 10.1074/jbc.M117.797944. Epub 2017 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验